24 research outputs found
Long-Term Continuous Corticosterone Treatment Decreases VEGF Receptor-2 Expression in Frontal Cortex
Objective: Stress and increased glucocorticoid levels are associated with many neuropsychiatric disorders including schizophrenia and depression. Recently, the role of vascular endothelial factor receptor-2 (VEGFR2/Flk1) signaling has been implicated in stress-mediated neuroplasticity. However, the mechanism of regulation of VEGF/Flk1 signaling under longterm continuous glucocorticoid exposure has not been elucidated. Material and Methods: We examined the possible effects of long-term continuous glucocorticoid exposure on VEGF/Flk1 signaling in cultured cortical neurons in vitro, mouse frontal cortex in vivo, and in post mortem human prefrontal cortex of both control and schizophrenia subjects. Results: We found that long-term continuous exposure to corticosterone (CORT, a natural glucocorticoid) reduced Flk1 protein levels both in vitro and in vivo. CORT treatment resulted in alterations in signaling molecules downstream to Flk1 such as PTEN, Akt and mTOR. We demonstrated that CORT-induced changes in Flk1 levels are mediated through glucocorticoid receptor (GR) and calcium. A significant reduction in Flk1-GR interaction was observed following CORT exposure. Interestingly, VEGF levels were increased in cortex, but decreased in serum following CORT treatment. Moreover, significant reductions in Flk1 and GR protein levels were found in postmortem prefrontal cortex samples from schizophrenia subjects. Conclusions: The alterations in VEGF/Flk1 signaling following long-term continuous CORT exposure represents a molecula
Recommended from our members
Evaluation of spatial and temporal root water uptake patterns of a flood-irrigated pecan tree using the hydrus (2D/3D) model
Quantitative information about the spatial and temporal patterns of compensatory root water uptake (RWU) in flood-irrigated pecan orchard is limited. We evaluated spatio-temporal compensated and uncompensated RWU patterns of mature pecan tree in a silty clay loam orchard using the HYDRUS (2D/3D) model. HYDRUS (2D/3D) simulations, which agreed well with measured water contents and temperatures at different soil depths and horizontal distances from the tree trunk, suggested that while both compensated and uncompensated RWU varied with soil depth they did not do so laterally because of similar spatial vertical distributions of root length density (RLD) for the under-canopy and the tree canopy dripline locations. Considering compensated RWU resulted in an increase in actual transpiration by 8%, and a decrease in evaporation and drainage by 5% and 50%, respectively, during a growing season. Simulated transpiration and relative transpiration (a ratio between actual and potential transpiration) values were correlated with measured transpiration and plant-based water stress indicators (stem and leaf water potentials), respectively. Overall, our results of the spatio-temporal compensatory RWU provide support to use HYDRUS (2D/3D) as a tool for managing efficient water use of pecan. © 2013 American Society of Civil Engineers. ASCE/AUGUST 2013