18 research outputs found

    Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces

    Get PDF
    © The Author(s), 2013. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS ONE 8 (2013): e56335, doi:10.1371/journal.pone.0056335.The deep marine subsurface is a vast habitat for microbial life where cells may live on geologic timescales. Because DNA in sediments may be preserved on long timescales, ribosomal RNA (rRNA) is suggested to be a proxy for the active fraction of a microbial community in the subsurface. During an investigation of eukaryotic 18S rRNA by amplicon pyrosequencing, unique profiles of Fungi were found across a range of marine subsurface provinces including ridge flanks, continental margins, and abyssal plains. Subseafloor fungal populations exhibit statistically significant correlations with total organic carbon (TOC), nitrate, sulfide, and dissolved inorganic carbon (DIC). These correlations are supported by terminal restriction length polymorphism (TRFLP) analyses of fungal rRNA. Geochemical correlations with fungal pyrosequencing and TRFLP data from this geographically broad sample set suggests environmental selection of active Fungi in the marine subsurface. Within the same dataset, ancient rRNA signatures were recovered from plants and diatoms in marine sediments ranging from 0.03 to 2.7 million years old, suggesting that rRNA from some eukaryotic taxa may be much more stable than previously considered in the marine subsurface.This work was performed with funding from the Center for Dark Energy Biosphere Investigations (C-DEBI) to William Orsi (OCE-0939564) and The Ocean Life Institute (WHOI) to Virginia Edgcomb (OLI-27071359)

    Exercise therapy in Type 2 diabetes

    Get PDF
    Structured exercise is considered an important cornerstone to achieve good glycemic control and improve cardiovascular risk profile in Type 2 diabetes. Current clinical guidelines acknowledge the therapeutic strength of exercise intervention. This paper reviews the wide pathophysiological problems associated with Type 2 diabetes and discusses the benefits of exercise therapy on phenotype characteristics, glycemic control and cardiovascular risk profile in Type 2 diabetes patients. Based on the currently available literature, it is concluded that Type 2 diabetes patients should be stimulated to participate in specifically designed exercise intervention programs. More attention should be paid to cardiovascular and musculoskeletal deconditioning as well as motivational factors to improve long-term treatment adherence and clinical efficacy. More clinical research is warranted to establish the efficacy of exercise intervention in a more differentiated approach for Type 2 diabetes subpopulations within different stages of the disease and various levels of co-morbidity

    Orbital controls and high-resolution cyclostratigraphy of Late Jurassic Early-Cretaceous in the Neuquén Basin

    No full text
    Detailed cyclostratigraphic analyses have been made from seven Tithonian–Hauterivian sections of the Vaca Muerta and Agrio Formations, exposed in southern Mendoza area of the Neuquén Basin. Both lithostratigraphic units are characterized by decimeter-scale rhythmic alternations of marlstones and limestones, showing a well-ordered hierarchy of cycles, including elementary cycles, bundles, and superbundles. According to biostratigraphic data, elementary cycles have a periodicity of ~18–21 ky, which correlates with the precessional cycle of the Earth’s axis. Spectral analysis based on time series of elementary cycle thicknesses allowed us to identify frequencies of ~400 ky, and ~90–120 ky, which we interpret as the modulation of the precessional cycle by the Earth’s orbital eccentricity. A third band frequency of ~40 ky was also identified that can be assigned to the obliquity cycle. Cyclostratigraphy enabled the construction of almost continuous floating astronomical time scale for the Tithonian–Hauterivian, for which a minimum duration of 5.67 myr for the Tithonian, 5.27 myr for the Berriasian, >3.45 myr for the Valanginian, and 5.96 myr for the Hauterivian have been assessed. Additionally, the likely transference mechanisms of the orbital signal to the sedimentary record are analyzed, proposing the coexistence of carbonate exportation and dilution as the dominant mechanisms.Fil: Kietzmann, Diego Alejandro. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Iglesia Llanos, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; ArgentinaFil: Kohan Martinez, Melisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Geociencias Básicas, Aplicadas y Ambientales de Buenos Aires; Argentin
    corecore