246 research outputs found

    High-mass X-ray binaries and OB-runaway stars

    Full text link
    High-mass X-ray binaries (HMXBs) represent an important phase in the evolution of massive binary systems. HMXBs provide unique diagnostics to test massive-star evolution, to probe the physics of radiation-driven winds, to study the process of mass accretion, and to measure fundamental parameters of compact objects. As a consequence of the supernova explosion that produced the neutron star (or black hole) in these systems, HMXBs have high space velocities and thus are runaways. Alternatively, OB-runaway stars can be ejected from a cluster through dynamical interactions. Observations obtained with the Hipparcos satellite indicate that both scenarios are at work. Only for a minority of the OB runaways (and HMXBs) a wind bow shock has been detected. This might be explained by the varying local conditions of the interstellar medium.Comment: 15 pages, latex (sty file included) with 5 embedded figures (one in jpg format), to appear in Proc. "Influence of binaries on stellar population studies", Eds. Vanbeveren, Van Rensberge

    The effects of supernovae on the dynamical evolution of binary stars and star clusters

    Full text link
    In this chapter I review the effects of supernovae explosions on the dynamical evolution of (1) binary stars and (2) star clusters. (1) Supernovae in binaries can drastically alter the orbit of the system, sometimes disrupting it entirely, and are thought to be partially responsible for `runaway' massive stars - stars in the Galaxy with large peculiar velocities. The ejection of the lower-mass secondary component of a binary occurs often in the event of the more massive primary star exploding as a supernova. The orbital properties of binaries that contain massive stars mean that the observed velocities of runaway stars (10s - 100s km s1^{-1}) are consistent with this scenario. (2) Star formation is an inherently inefficient process, and much of the potential in young star clusters remains in the form of gas. Supernovae can in principle expel this gas, which would drastically alter the dynamics of the cluster by unbinding the stars from the potential. However, recent numerical simulations, and observational evidence that gas-free clusters are observed to be bound, suggest that the effects of supernova explosions on the dynamics of star clusters are likely to be minimal.Comment: 16 pages, to appear in the 'Handbook of Supernovae', eds. Paul Murdin and Athem Alsabti. This version replaces an earlier version that contained several typo

    Development of genomic resources for the narrow-leafed lupin (Lupinus angustifolius): construction of a bacterial artificial chromosome (BAC) library and BAC-end sequencing

    Get PDF
    Extent: 15p.BACKGROUND: Lupinus angustifolius L, also known as narrow-leafed lupin (NLL), is becoming an important grain legume crop that is valuable for sustainable farming and is becoming recognised as a potential human health food. Recent interest is being directed at NLL to improve grain production, disease and pest management and health benefits of the grain. However, studies have been hindered by a lack of extensive genomic resources for the species. RESULTS: A NLL BAC library was constructed consisting of 111,360 clones with an average insert size of 99.7 Kbp from cv Tanjil. The library has approximately 12 × genome coverage. Both ends of 9600 randomly selected BAC clones were sequenced to generate 13985 BAC end-sequences (BESs), covering approximately 1% of the NLL genome. These BESs permitted a preliminary characterisation of the NLL genome such as organisation and composition, with the BESs having approximately 39% G:C content, 16.6% repetitive DNA and 5.4% putative gene-encoding regions. From the BESs 9966 simple sequence repeat (SSR) motifs were identified and some of these are shown to be potential markers. CONCLUSIONS: The NLL BAC library and BAC-end sequences are powerful resources for genetic and genomic research on lupin. These resources will provide a robust platform for future high-resolution mapping, map-based cloning, comparative genomics and assembly of whole-genome sequencing data for the species.Ling-Ling Gao, James K. Hane, Lars G. Kamphuis, Rhonda Foley, Bu-Jun Shi, Craig A. Atkins and Karam B. Sing

    Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens

    Get PDF
    The average nitrogen-to-phosphorus ratio (N?P) of insect herbivores is less than that of leaves, suggesting that P may mediate plant-insect interactions more often than appreciated. We investigated whether succession-related heterogeneity in N and P stoichiometry influences herbivore performance on N-fixing lupin (Lupinus lepidus) colonizing primary successional volcanic surfaces, where the abundances of several specialist lepidopteran herbivores are inversely related to lupin density and are known to alter lupin colonization dynamics. We examined larval performance in response to leaf nutritional characteristics using gelechiid and pyralid leaf-tiers, and a noctuid leaf-cutter.Apple JL, Wink M, Wills SE, Bishop JG (2009) Successional Change in Phosphorus Stoichiometry Explains the Inverse Relationship between Herbivory and Lupin Density on Mount St. Helens. PLoS ONE 4(11): e7807. doi:10.1371/journal.pone.000780

    Tear fluid biomarkers in ocular and systemic disease: potential use for predictive, preventive and personalised medicine

    Get PDF
    In the field of predictive, preventive and personalised medicine, researchers are keen to identify novel and reliable ways to predict and diagnose disease, as well as to monitor patient response to therapeutic agents. In the last decade alone, the sensitivity of profiling technologies has undergone huge improvements in detection sensitivity, thus allowing quantification of minute samples, for example body fluids that were previously difficult to assay. As a consequence, there has been a huge increase in tear fluid investigation, predominantly in the field of ocular surface disease. As tears are a more accessible and less complex body fluid (than serum or plasma) and sampling is much less invasive, research is starting to focus on how disease processes affect the proteomic, lipidomic and metabolomic composition of the tear film. By determining compositional changes to tear profiles, crucial pathways in disease progression may be identified, allowing for more predictive and personalised therapy of the individual. This article will provide an overview of the various putative tear fluid biomarkers that have been identified to date, ranging from ocular surface disease and retinopathies to cancer and multiple sclerosis. Putative tear fluid biomarkers of ocular disorders, as well as the more recent field of systemic disease biomarkers, will be shown

    The search for transient astrophysical neutrino emission with IceCube-DeepCore

    Get PDF
    We present the results of a search for astrophysical sources of brief transient neutrino emission using IceCube and DeepCore data acquired between 2012 May 15 and 2013 April 30. While the search methods employed in this analysis are similar to those used in previous IceCube point source searches, the data set being examined consists of a sample of predominantly sub-TeV muon-neutrinos from the Northern Sky (-5 degrees < delta < 90 degrees) obtained through a novel event selection method. This search represents a first attempt by IceCube to identify astrophysical neutrino sources in this relatively unexplored energy range. The reconstructed direction and time of arrival of neutrino events are used to search for any significant self-correlation in the data set. The data revealed no significant source of transient neutrino emission. This result has been used to construct limits at timescales ranging from roughly 1 s to 10 days for generic soft-spectra transients. We also present limits on a specific model of neutrino emission from soft jets in core-collapse supernovae

    ICD-10 coding algorithms for defining comorbidities of acute myocardial infarction

    Get PDF
    BACKGROUND: With the introduction of ICD-10 throughout Canada, it is important to ensure that Acute Myocardial Infarction (AMI) comorbidities employed in risk adjustment methods remain valid and robust. Therefore, we developed ICD-10 coding algorithms for nine AMI comorbidities, examined the validity of the ICD-10 and ICD-9 coding algorithms in detection of these comorbidities, and assessed their performance in predicting mortality. The nine comorbidities that we examined were shock, diabetes with complications, congestive heart failure, cancer, cerebrovascular disease, pulmonary edema, acute renal failure, chronic renal failure, and cardiac dysrhythmias. METHODS: Coders generated a comprehensive list of ICD-10 codes corresponding to each AMI comorbidity. Physicians independently reviewed and determined the clinical relevance of each item on the list. To ensure that the newly developed ICD-10 coding algorithms were valid in recording comorbidities, medical charts were reviewed. After assessing ICD-10 algorithms' validity, both ICD-10 and ICD-9 algorithms were applied to a Canadian provincial hospital discharge database to predict in-hospital, 30-day, and 1-year mortality. RESULTS: Compared to chart review data as a 'criterion standard', ICD-9 and ICD-10 data had similar sensitivities (ranging from 7.1 – 100%), and specificities (above 93.6%) for each of the nine AMI comorbidities studied. The frequencies for the comorbidities were similar between ICD-9 and ICD-10 coding algorithms for 49,861 AMI patients in a Canadian province during 1994 – 2004. The C-statistics for predicting 30-day and 1 year mortality were the same for ICD-9 (0.82) and for ICD-10 data (0.81). CONCLUSION: The ICD-10 coding algorithms developed in this study to define AMI comorbidities performed similarly as past ICD-9 coding algorithms in detecting conditions and risk-adjustment in our sample. However, the ICD-10 coding algorithms should be further validated in external databases

    The MCL-1 BH3 helix is an exclusive MCL-1 inhibitor and apoptosis sensitizer

    Get PDF
    available in PMC 2011 February 3.MCL-1 has emerged as a major oncogenic and chemoresistance factor. A screen of stapled peptide helices identified the MCL-1 BH3 domain as selectively inhibiting MCL-1 among the related anti-apoptotic Bcl-2 family members, providing insights into the molecular determinants of binding specificity and a new approach for sensitizing cancer cells to apoptosis.National Institutes of Health (U.S.) (NIH award 5RO1GM084181)National Institutes of Health (U.S.) (NIH grant 5P01CA92625)National Institutes of Health (U.S.) (Ruth L. Kirschstein National Research Service Award 1F31CA144566)Burroughs Wellcome Fund (Career Award
    corecore