24 research outputs found
A perspective on SIDS pathogenesis. The hypotheses: plausibility and evidence
Several theories of the underlying mechanisms of Sudden Infant Death Syndrome (SIDS) have been proposed. These theories have born relatively narrow beach-head research programs attracting generous research funding sustained for many years at expense to the public purse. This perspective endeavors to critically examine the evidence and bases of these theories and determine their plausibility; and questions whether or not a safe and reasoned hypothesis lies at their foundation. The Opinion sets specific criteria by asking the following questions: 1. Does the hypothesis take into account the key pathological findings in SIDS? 2. Is the hypothesis congruent with the key epidemiological risk factors? 3. Does it link 1 and 2? Falling short of any one of these answers, by inference, would imply insufficient grounds for a sustainable hypothesis. Some of the hypotheses overlap, for instance, notional respiratory failure may encompass apnea, prone sleep position, and asphyxia which may be seen to be linked to co-sleeping. For the purposes of this paper, each element will be assessed on the above criteria
Genetic defects in dolichol metabolism
Contains fulltext :
155350.pdf (publisher's version ) (Open Access)Congenital disorders of glycosylation (CDG) comprise a group of inborn errors of metabolism with abnormal glycosylation of proteins and lipids. Patients with defective protein N-glycosylation are identified in routine metabolic screening via analysis of serum transferrin glycosylation. Defects in the assembly of the dolichol linked Glc(3)Man(9)GlcNAc(2) glycan and its transfer to proteins lead to the (partial) absence of complete glycans on proteins. These defects are called CDG-I and are located in the endoplasmic reticulum (ER) or cytoplasm. Defects in the subsequent processing of protein bound glycans result in the presence of truncated glycans on proteins. These defects are called CDG-II and the enzymes involved are located mainly in the Golgi apparatus. In recent years, human defects have been identified in dolichol biosynthesis genes within the group of CDG-I patients. This has increased interest in dolichol metabolism, has resulted in specific recognizable clinical symptoms in CDG-I and has offered new mechanistic insights in dolichol biosynthesis. We here review its biosynthetic pathways, the clinical and biochemical phenotypes in dolichol-related CDG defects, up to the formation of dolichyl-P-mannose (Dol-P-Man), and discuss existing evidence of regulatory networks in dolichol metabolism to provide an outlook on therapeutic strategies