20 research outputs found

    Adjacent habitat influence on stink bug (Hemiptera: Pentatomidae) densities and the associated damage at field corn and soybean edges.

    Get PDF
    The local dispersal of polyphagous, mobile insects within agricultural systems impacts pest management. In the mid-Atlantic region of the United States, stink bugs, especially the invasive Halyomorpha halys (St氓l 1855), contribute to economic losses across a range of cropping systems. Here, we characterized the density of stink bugs along the field edges of field corn and soybean at different study sites. Specifically, we examined the influence of adjacent managed and natural habitats on the density of stink bugs in corn and soybean fields at different distances along transects from the field edge. We also quantified damage to corn grain, and to soybean pods and seeds, and measured yield in relation to the observed stink bug densities at different distances from field edge. Highest density of stink bugs was limited to the edge of both corn and soybean fields. Fields adjacent to wooded, crop and building habitats harbored higher densities of stink bugs than those adjacent to open habitats. Damage to corn kernels and to soybean pods and seeds increased with stink bug density in plots and was highest at the field edges. Stink bug density was also negatively associated with yield per plant in soybean. The spatial pattern of stink bugs in both corn and soybeans, with significant edge effects, suggests the use of pest management strategies for crop placement in the landscape, as well as spatially targeted pest suppression within fields

    Regression tree modeling of spatial pattern and process interactions

    No full text
    In forestry, many fundamental spatial processes cannot be measured directly and data on spatial patterns are used as a surrogate for studying processes. To characterize the outcomes of a dynamic process in terms of a spatial pattern, we often consider the probability of certain outcomes over a large area rather than on the scale of the particular process. In this chapter we demonstrate data mining approaches that leverage the growing availability of forestry-related spatial data sets for understanding spatial processes. We present classification and regression trees (CART) and associated methods, including boosted regression trees (BRT) and random forests (RT). We demonstrate how data mining or machine learning approaches are useful for relating spatial patterns and processes. Methods are applied to a wildfire data and covariate data are used to contextualize the quantified patterns. Results indicate that fire patterns are mostly related to processes influenced by people. Given the growing number of multi-temporal and large area datasets on forests and ecology machine learning and data mining approaches should be leveraged to quantify dynamic space-time relationships
    corecore