3,700 research outputs found
Absolutely continuous invariant measures for random non-uniformly expanding maps
We prove existence of (at most denumerable many) absolutely continuous
invariant probability measures for random one-dimensional dynamical systems
with asymptotic expansion. If the rate of expansion (Lyapunov exponents) is
bounded away from zero, we obtain finitely many ergodic absolutely continuous
invariant probability measures, describing the asymptotics of almost every
point.
We also prove a similar result for higher-dimensional random non-uniformly
expanding dynamical systems. The results are consequences of the construction
of such measures for skew-products with essentially arbitrary base dynamics and
asymptotic expansion along the fibers. In both cases our method deals with
either critical or singular points for the random maps.Comment: 30 pages; 2 figures. Keywords: non-uniform expansion, random
dynamics, slow recurrence, singular and critical set, absolutely continuous
invariant measures, skew-product. To appear in Math Z, 201
A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain
Molinillo,S., Ekinci, Y., Japutra, A. (2014)'A cross validation of Consumer-Based Brand Equity (CBBE) with Private Labels in Spain'. in MartÃnez-López, Gázquez-Abad, J.C. and Sethuraman, R. J.A. (eds.) Advances in National Brand and Private Label Marketing. Second International Conference, 2015. Springer Proceedings in Business and Economics, pp. 113-125In recent years a number of Consumer-Based Brand Equity (CBBE) models and measurement scales have been introduced in the branding literature. However, examinations of brand equity in Private Labels (PL) are rather limited. This study aims to compare the validity of the two prominent CBBE models those introduced by Yoo and Donthu (2001) and Nam et al. (2011). In order to test the models and make this comparison, the study collected data from 236 respondents who rated private labels in Spain. A list of 30 different fashion and sportswear PL was introduced to respondents. These brands do not make any reference to the retail store in which they are sold. Research findings suggest that the extended CBBE model introduced by Nam et al. (2011) and Ciftci et al. (2014) is more reliable and valid than Yoo and Donthu’s model for assessing PL. Theoretical contributions and managerial implications are discussed.Universidad de Málaga. Campus de Excelencia Internacional AndalucÃa Tech
Generating Single Microwave Photons in a Circuit
Electromagnetic signals in circuits consist of discrete photons, though
conventional voltage sources can only generate classical fields with a coherent
superposition of many different photon numbers. While these classical signals
can control and measure bits in a quantum computer (qubits), single photons can
carry quantum information, enabling non-local quantum interactions, an
important resource for scalable quantum computing. Here, we demonstrate an
on-chip single photon source in a circuit quantum electrodynamics (QED)
architecture, with a microwave transmission line cavity that collects the
spontaneous emission of a single superconducting qubit with high efficiency.
The photon source is triggered by a qubit rotation, as a photon is generated
only when the qubit is excited. Tomography of both qubit and fluorescence
photon shows that arbitrary qubit states can be mapped onto the photon state,
demonstrating an ability to convert a stationary qubit into a flying qubit.
Both the average power and voltage of the photon source are characterized to
verify performance of the system. This single photon source is an important
addition to a rapidly growing toolbox for quantum optics on a chip.Comment: 6 pages, 5 figures, hires version at
http://www.eng.yale.edu/rslab/papers/single_photon_hires.pd
Non-stationary covariance function modelling in 2D least-squares collocation
Standard least-squares collocation (LSC) assumes 2D stationarity and 3D isotropy, and relies on a covariance function to account for spatial dependence in the ob-served data. However, the assumption that the spatial dependence is constant through-out the region of interest may sometimes be violated. Assuming a stationary covariance structure can result in over-smoothing of, e.g., the gravity field in mountains and under-smoothing in great plains. We introduce the kernel convolution method from spatial statistics for non-stationary covariance structures, and demonstrate its advantage fordealing with non-stationarity in geodetic data. We then compared stationary and non-stationary covariance functions in 2D LSC to the empirical example of gravity anomaly interpolation near the Darling Fault, Western Australia, where the field is anisotropic and non-stationary. The results with non-stationary covariance functions are better than standard LSC in terms of formal errors and cross-validation against data not used in the interpolation, demonstrating that the use of non-stationary covariance functions can improve upon standard (stationary) LSC
Towards an understanding of hole superconductivity
From the very beginning K. Alex M\"uller emphasized that the materials he and
George Bednorz discovered in 1986 were superconductors. Here I would
like to share with him and others what I believe to be key reason for why
high cuprates as well as all other superconductors are hole
superconductors, which I only came to understand a few months ago. This paper
is dedicated to Alex M\"uller on the occasion of his 90th birthday.Comment: Dedicated to Alex M\"uller on the Occasion of his 90th Birthday.
arXiv admin note: text overlap with arXiv:1703.0977
Bayesian paternity analysis and mating patterns in a parasitic nematode, Trichostrongylus tenuis
Mating behaviour is a fundamental aspect of the evolutionary ecology of sexually reproducing species, but one that has been under-researched in parasitic nematodes. We analysed mating behaviour in the parasitic nematode Trichostrongylus tenuis by performing a paternity analysis in a population from a single red grouse host. Paternity of the 150 larval offspring of 25 mothers (sampled from one of the two host caeca) was assigned among 294 candidate fathers (sampled from both caeca). Each candidate father's probability of paternity of each offspring was estimated from 10-locus microsatellite genotypes. Seventy-six (51%) offspring were assigned a father with a probability of >0.8, and the estimated number of unsampled males was 136 (95% credible interval (CI) 77-219). The probability of a male from one caecum fathering an offspring in the other caecum was estimated as 0.024 (95% CI 0.003-0.077), indicating that the junction of the caeca is a strong barrier to dispersal. Levels of promiscuity (defined as the probability of two of an adult's offspring sharing only one parent) were high for both sexes. Variance in male reproductive success was moderately high, possibly because of a combination of random mating and high variance in post-copulatory reproductive success. These results provide the first data on individual mating behaviour among parasitic nematodes
Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model
Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al
Doses to internal organs for various breast radiation techniques - implications on the risk of secondary cancers and cardiomyopathy
<p>Abstract</p> <p>Background</p> <p>Breast cancers are more frequently diagnosed at an early stage and currently have improved long term outcomes. Late normal tissue complications induced by adjuvant radiotherapy like secondary cancers or cardiomyopathy must now be avoided at all cost. Several new breast radiotherapy techniques have been developed and this work aims at comparing the scatter doses of internal organs for those techniques.</p> <p>Methods</p> <p>A CT-scan of a typical early stage left breast cancer patient was used to describe a realistic anthropomorphic phantom in the MCNP Monte Carlo code. Dose tally detectors were placed in breasts, the heart, the ipsilateral lung, and the spleen. Five irradiation techniques were simulated: whole breast radiotherapy 50 Gy in 25 fractions using physical wedge or breast IMRT, 3D-CRT partial breast radiotherapy 38.5 Gy in 10 fractions, HDR brachytherapy delivering 34 Gy in 10 treatments, or Permanent Breast <sup>103</sup>Pd Seed Implant delivering 90 Gy.</p> <p>Results</p> <p>For external beam radiotherapy the wedge compensation technique yielded the largest doses to internal organs like the spleen or the heart, respectively 2,300 mSv and 2.7 Gy. Smaller scatter dose are induced using breast IMRT, respectively 810 mSv and 1.1 Gy, or 3D-CRT partial breast irradiation, respectively 130 mSv and 0.7 Gy. Dose to the lung is also smaller for IMRT and 3D-CRT compared to the wedge technique. For multicatheter HDR brachytherapy a large dose is delivered to the heart, 3.6 Gy, the spleen receives 1,171 mSv and the lung receives 2,471 mSv. These values are 44% higher in case of a balloon catheter. In contrast, breast seeds implant is associated with low dose to most internal organs.</p> <p>Conclusions</p> <p>The present data support the use of breast IMRT or virtual wedge technique instead of physical wedges for whole breast radiotherapy. Regarding partial breast irradiation techniques, low energy source brachytherapy and external beam 3D-CRT appear safer than <sup>192</sup>Ir HDR techniques.</p
- …