6 research outputs found

    A preclinical 188Re tumor therapeutic investigation using MORF/cMORF pretargeting and an antiTAG-72 antibody CC49

    No full text
    The utility of MORF/cMORF pretargeting for the radiotherapy of cancer requires further validation in tumored mice before clinical trials. We now report on a therapeutic study in mice pretargeted with MORF-CC49 (the anti-TAG-72 antibody CC49 conjugated with MORF, a phosphorodiamidate morpholino oligomer) and then targeted by 188Re-cMORF (a 188Re labeled complementary MORF). Before the dose-escalating therapeutic study, a pretargeting study in LS174T tumored mice was performed at tracer levels. By both necropsy and imaging, the tracer study showed that the whole body radioactivity was largely restricted to tumor in the mice pretargeted 48 h earlier with MORF-CC49 and the tumor radioactivity was retained over 90 h. After decay correction, a best-fit to the biodistribution provided the areas under the radioactivity curves (AUCs) used for the radiation dose estimates. The tumor to normal organ AUC ratios in all cases were greater than unity and ranged from 3 (kidneys) to 48 (muscle). Tumor growth was inhibited in the therapy study. At the highest 188Re dose of 1.40 mCi, a complete but temporary tumor remission was evident in three out of the five animals. Histological examination of tissues from these animals showed no evidence of cytotoxicity to normal tissues but obvious radiation damage to tumor. In conclusion, effective radiotherapy was achieved in a mouse model by MORF/cMORF pretargeting using 188Re as the therapeutic radionuclide and CC49 as the pretargeting antibody

    Comparison of IgG and F(ab')2 fragments of bispecific anti-RCCxanti-DTIn-1 antibody for pretargeting purposes.

    No full text
    Contains fulltext : 48915.pdf (publisher's version ) (Closed access)PURPOSE: An effective pretargeting strategy was developed for renal cell carcinoma (RCC) based on a biologically produced bispecific monoclonal antibody: anti-RCCxanti-DTPA(In) (bsMAb: G250xDTIn-1). Tumour uptake of a (111)In-labelled bivalent peptide after pretargeting with bsMAb G250xDTIn-1 was relatively high compared with that in other pretargeting systems using chemically coupled F(ab')(2) fragments. Here, we investigated the effect of the bsMAb form in the pretargeting strategy. METHODS: To determine the optimal interval between the administration of each of the bsMAb forms and the (111)In-labelled bivalent peptide, the biodistribution of the radioiodinated bsMAb forms was studied in athymic mice with subcutaneous SK-RC-1 RCC tumours. Since tumour targeting of the radiolabelled peptide depends on the bsMAb form and dose, a bsMAb dose escalation study was carried out for both bsMAb forms. Under optimised conditions, the biodistribution of the (111)In label in mice with pretargeted RCC was determined from 4 h up to 7 days p.i. RESULTS: The optimal interval between the two administrations was 72 h for the bsMAb IgG and 4 h for the bsMAb F(ab')(2). The optimal bsMAb dose for intact IgG was 67 pmol and the optimal bsMAb F(ab')(2) dose was 200 pmol. Targeting of the pretargeted RCC with 4 pmol (111)In-labelled bivalent peptide revealed high tumour uptake with both bsMAb forms. CONCLUSION: With the pretargeting strategy, using either bsMAb IgG or bsMAb F(ab')(2), very efficient peptide targeting of the tumour was obtained. Uptake and retention of the radiolabel in the tumour with the pretargeting approach are not affected by the bsMAb form used

    Pretargeted Radioimmunotherapy for Hematologic and Other Malignancies

    No full text
    Radioimmunotherapy (RIT) has emerged as one of the most promising treatment options, particularly for hematologic malignancies. However, this approach has generally been limited by a suboptimal therapeutic index (target-to-nontarget ratio) and an inability to deliver sufficient radiation doses to tumors selectively. Pretargeted RIT (PRIT) circumvents these limitations by separating the targeting vehicle from the subsequently administered therapeutic radioisotope, which binds to the tumor-localized antibody or is quickly excreted if unbound. A growing number of preclinical proof-of-principle studies demonstrate that PRIT is feasible and safe and provides improved directed radionuclide delivery to malignant cells compared with conventional RIT while sparing normal cells from nonspecific radiotoxicity. Early phase clinical studies corroborate these preclinical findings and suggest better efficacy and lesser toxicities in patients with hematologic and other malignancies. With continued research, PRIT-based treatment strategies promise to become cornerstones to improved outcomes for cancer patients despite their complexities

    A spontaneous mutation in kdsD, a biosynthesis gene for 3 Deoxy-D-manno-Octulosonic Acid, occurred in a ciprofloxacin resistant strain of Francisella tularensis and caused a high level of attenuation in murine models of tularemia

    No full text
    corecore