202 research outputs found

    Higgs After the Discovery: A Status Report

    Full text link
    Recently, the ATLAS and CMS collaborations have announced the discovery of a 125 GeV particle, commensurable with the Higgs boson. We analyze the 2011 and 2012 LHC and Tevatron Higgs data in the context of simplified new physics models, paying close attention to models which can enhance the diphoton rate and allow for a natural weak-scale theory. Combining the available LHC and Tevatron data in the ZZ* 4-lepton, WW* 2-lepton, diphoton, and b-bbar channels, we derive constraints on the effective low-energy theory of the Higgs boson. We map several simplified scenarios to the effective theory, capturing numerous new physics models such as supersymmetry, composite Higgs, dilaton. We further study models with extended Higgs sectors which can naturally enhance the diphoton rate. We find that the current Higgs data are consistent with the Standard Model Higgs boson and, consequently, the parameter space in all models which go beyond the Standard Model is highly constrained.Comment: 37 pages; v2: ATLAS dijet-tag diphoton channel added, dilaton and doublet-singlet bugs corrected, references added; v3: ATLAS WW channel included, comments and references adde

    Implications of a Modified Higgs to Diphoton Decay Width

    Get PDF
    Motivated by recent results from Higgs searches at the Large Hadron Collider, we consider possibilities to enhance the diphoton decay width of the Higgs boson over the Standard Model expectation, without modifying either its production rate or the partial widths in the WW and ZZ channels. Studying effects of new charged scalars, fermions and vector bosons, we find that significant variations in the diphoton width may be possible if the new particles have light masses of the order of a few hundred GeV and sizeable couplings to the Higgs boson. Such couplings could arise naturally if there is large mass mixing between two charged particles that is induced by the Higgs vacuum expectation value. In addition, there is generically also a shift in the Z + Gamma partial width, which in the case of new vector bosons tends to be of similar magnitude as the shift in the diphoton partial width, but smaller in other cases. Therefore simultaneous measurements in these two channels could reveal properties of new charged particles at the electroweak scale.Comment: 29 pages, 8 figures; v2: updated references and minor improvements in presentations; v3: sign of the scalar contribution to Z+Gamma amplitudes fixed. Related figures update

    Theoretical Constraints on the Higgs Effective Couplings

    Full text link
    We derive constraints on the sign of couplings in an effective Higgs Lagrangian using prime principles such as the naturalness principle, global symmetries, and unitarity. Specifically, we study four dimension-six operators, O_H, O_y, O_g, and O_gamma, which contribute to the production and decay of the Higgs boson at the Large Hadron Collider (LHC), among other things. Assuming the Higgs is a fundamental scalar, we find: 1) the coefficient of O_H is positive except when there are triplet scalars, resulting in a reduction in the Higgs on-shell coupling from their standard model (SM) expectations if no other operators contribute, 2) the linear combination of O_H and O_y controlling the overall Higgs coupling to fermion is always reduced, 3) the sign of O_g induced by a new colored fermion is such that it interferes destructively with the SM top contribution in the gluon fusion production of the Higgs, if the new fermion cancels the top quadratic divergence in the Higgs mass, and 4) the correlation between naturalness and the sign of O_gamma is similar to that of O_g, when there is a new set of heavy electroweak gauge bosons. Next considering a composite scalar for the Higgs, we find the reduction in the on-shell Higgs couplings persists. If further assuming a collective breaking mechanism as in little Higgs theories, the coefficient of O_H remains positive even in the presence of triplet scalars. In the end, we conclude that the gluon fusion production of the Higgs boson is reduced from the SM rate in all composite Higgs models. Our study suggests a wealth of information could be revealed by precise measurements of the Higgs couplings, providing strong motivations for both improving on measurements at the LHC and building a precision machine such as the linear collider.Comment: 37 pages, one figure; v2: improved discussion on dispersion relation and other minor modifications; version accepted for publication

    Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking

    Get PDF
    We revisit the electroweak precision tests for Higgsless models of strong EWSB. We use the Vector Meson Dominance approach and express S and T via couplings characterizing vector and axial spin-1 resonances of the strong sector. These couplings are constrained by the elastic unitarity and by requiring a good UV behavior of various formfactors. We pay particular attention to the one-loop contribution of resonances to T (beyond the chiral log), and to how it can improve the fit. We also make contact with the recent studies of Conformal Technicolor. We explain why the second Weinberg sum rule never converges in these models, and formulate a condition necessary for preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE

    Higgs decay to dark matter in low energy SUSY: is it detectable at the LHC ?

    Full text link
    Due to the limited statistics so far accumulated in the Higgs boson search at the LHC, the Higgs boson property has not yet been tightly constrained and it is still allowed for the Higgs boson to decay invisibly to dark matter with a sizable branching ratio. In this work, we examine the Higgs decay to neutralino dark matter in low energy SUSY by considering three different models: the minimal supersymmetric standard model (MSSM), the next-to-minimal supersymmetric standard models (NMSSM) and the nearly minimal supersymmetric standard model (nMSSM). Under current experimental constraints at 2-sigma level (including the muon g-2 and the dark matter relic density), we scan over the parameter space of each model. Then in the allowed parameter space we calculate the branching ratio of the SM-like Higgs decay to neutralino dark matter and examine its observability at the LHC by considering three production channels: the weak boson fusion VV->h, the associated production with a Z-boson pp->hZ+X or a pair of top quarks pp->htt_bar+X. We find that in the MSSM such a decay is far below the detectable level; while in both the NMSSM and nMSSM the decay branching ratio can be large enough to be observable at the LHC.Comment: Version in JHE

    Integrative analysis of large scale expression profiles reveals core transcriptional response and coordination between multiple cellular processes in a cyanobacterium

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cyanobacteria are the only known prokaryotes capable of oxygenic photosynthesis. They play significant roles in global biogeochemical cycles and carbon sequestration, and have recently been recognized as potential vehicles for production of renewable biofuels. <it>Synechocystis </it>sp. PCC 6803 has been extensively used as a model organism for cyanobacterial studies. DNA microarray studies in <it>Synechocystis </it>have shown varying degrees of transcriptome reprogramming under altered environmental conditions. However, it is not clear from published work how transcriptome reprogramming affects pre-existing networks of fine-tuned cellular processes.</p> <p>Results</p> <p>We have integrated 163 transcriptome data sets generated in response to numerous environmental and genetic perturbations in <it>Synechocystis</it>. Our analyses show that a large number of genes, defined as the core transcriptional response (CTR), are commonly regulated under most perturbations. The CTR contains nearly 12% of <it>Synechocystis </it>genes found on its chromosome. The majority of genes in the CTR are involved in photosynthesis, translation, energy metabolism and stress protection. Our results indicate that a large number of differentially regulated genes identified in most reported studies in <it>Synechocystis </it>under different perturbations are associated with the general stress response. We also find that a majority of genes in the CTR are coregulated with 25 regulatory genes. Some of these regulatory genes have been implicated in cellular responses to oxidative stress, suggesting that reactive oxygen species are involved in the regulation of the CTR. A Bayesian network, based on the regulation of various KEGG pathways determined from the expression patterns of their associated genes, has revealed new insights into the coordination between different cellular processes.</p> <p>Conclusion</p> <p>We provide here the first integrative analysis of transcriptome data sets generated in a cyanobacterium. This compilation of data sets is a valuable resource to researchers for all cyanobacterial gene expression related queries. Importantly, our analysis provides a global description of transcriptional reprogramming under different perturbations and a basic framework to understand the strategies of cellular adaptations in <it>Synechocystis</it>.</p

    Legacy Effects of Canopy Disturbance on Ecosystem Functioning in Macroalgal Assemblages

    Get PDF
    Macroalgal assemblages are some of the most productive systems on earth and they contribute significantly to nearshore ecosystems. Globally, macroalgal assemblages are increasingly threatened by anthropogenic activities such as sedimentation, eutrophication and climate change. Despite this, very little research has considered the potential effects of canopy loss on primary productivity, although the literature is rich with evidence showing the ecological effects of canopy disturbance. In this study we used experimental removal plots of habitat-dominating algae (Order Fucales) that had been initiated several years previously to construct a chronosequence of disturbed macroalgal communities and to test if there were legacy effects of canopy loss on primary productivity. We used in situ photo-respirometry to test the primary productivity of algal assemblages in control and removal plots at two intertidal elevations. In the mid tidal zone assemblage, the removal plots at two sites had average primary productivity values of only 40% and 60% that of control areas after 90 months. Differences in productivity were associated with lower biomass and density of the fucoid algal canopy and lower taxa richness in the removal plots after 90 months. Low-shore plots, established three years earlier, showed that the loss of the large, dominant fucoid resulted in at least 50% less primary productivity of the algal assemblage than controls, which lasted for 90 months; other smaller fucoid species had recruited but they were far less productive. The long term reduction in primary productivity following a single episode of canopy loss of a dominant species in two tidal zones suggests that these assemblages are not very resilient to large perturbations. Decreased production output may have severe and long-lasting consequences on the surrounding communities and has the potential to alter nutrient cycling in the wider nearshore environment

    LHC Signatures of a Minimal Supersymmetric Hidden Valley

    Full text link
    We investigate the LHC signals of a minimal supersymmetric hidden valley. Our theory consists of the supersymmetric Standard Model along with a light hidden U(1)_x gauge multiplet and a pair of hidden chiral superfields that spontaneously break the new Abelian gauge symmetry near a GeV. The visible and hidden sectors interact exclusively through supersymmetric gauge kinetic mixing. We perform a thorough examination of the hidden decay cascades initiated by the lightest Standard Model superpartner and we study the range of LHC signals they can produce. In particular, we find parameter regions that give rise to missing energy, single and multiple lepton jets, and displaced vertices. Given the simplicity of the underlying theory and the broad range of collider signals it can produce, we propose that this model is a useful benchmark for LHC studies of (supersymmetric) hidden valleys.Comment: 45 pages, 15 figures; typos corrected but conclusions unchange
    • …
    corecore