119 research outputs found
Translating the potential of the urine steroid metabolome to stage NAFLD (TrUSt-NAFLD): study protocol for a multicentre, prospective validation study.
INTRODUCTION: Non-alcoholic fatty liver disease (NAFLD) affects approximately one in four individuals and its prevalence continues to rise. The advanced stages of NAFLD with significant liver fibrosis are associated with adverse morbidity and mortality outcomes. Currently, liver biopsy remains the 'gold-standard' approach to stage NAFLD severity. Although generally well tolerated, liver biopsies are associated with significant complications, are resource intensive, costly, and sample only a very small area of the liver as well as requiring day case admission to a secondary care setting. As a result, there is a significant unmet need to develop non-invasive biomarkers that can accurately stage NAFLD and limit the need for liver biopsy. The aim of this study is to validate the use of the urine steroid metabolome as a strategy to stage NAFLD severity and to compare its performance against other non-invasive NAFLD biomarkers. METHODS AND ANALYSIS: The TrUSt-NAFLD study is a multicentre prospective test validation study aiming to recruit 310 patients with biopsy-proven and staged NAFLD across eight centres within the UK. 150 appropriately matched control patients without liver disease will be recruited through the Oxford Biobank. Blood and urine samples, alongside clinical data, will be collected from all participants. Urine samples will be analysed by liquid chromatography-tandem mass spectroscopy to quantify a panel of predefined steroid metabolites. A machine learning-based classifier, for example, Generalized Matrix Relevance Learning Vector Quantization that was trained on retrospective samples, will be applied to the prospective steroid metabolite data to determine its ability to identify those patients with advanced, as opposed to mild-moderate, liver fibrosis as a consequence of NAFLD. ETHICS AND DISSEMINATION: Research ethical approval was granted by West Midlands, Black Country Research Ethics Committee (REC reference: 21/WM/0177). A substantial amendment (TrUSt-NAFLD-SA1) was approved on 26 November 2021. TRIAL REGISTRATION NUMBER: ISRCTN19370855
FibroScan-AST (FAST) score for the non-invasive identification of patients with non-alcoholic steatohepatitis with significant activity and fibrosis: a prospective derivation and global validation study
BACKGROUND
The burden of non-alcoholic fatty liver disease (NAFLD) is increasing globally, and a major priority is to identify patients with non-alcoholic steatohepatitis (NASH) who are at greater risk of progression to cirrhosis, and who will be candidates for clinical trials and emerging new pharmacotherapies. We aimed to develop a score to identify patients with NASH, elevated NAFLD activity score (NAS≥4), and advanced fibrosis (stage 2 or higher [F≥2]).
METHODS
This prospective study included a derivation cohort before validation in multiple international cohorts. The derivation cohort was a cross-sectional, multicentre study of patients aged 18 years or older, scheduled to have a liver biopsy for suspicion of NAFLD at seven tertiary care liver centres in England. This was a prespecified secondary outcome of a study for which the primary endpoints have already been reported. Liver stiffness measurement (LSM) by vibration-controlled transient elastography and controlled attenuation parameter (CAP) measured by FibroScan device were combined with aspartate aminotransferase (AST), alanine aminotransferase (ALT), or AST:ALT ratio. To identify those patients with NASH, an elevated NAS, and significant fibrosis, the best fitting multivariable logistic regression model was identified and internally validated using boot-strapping. Score calibration and discrimination performance were determined in both the derivation dataset in England, and seven independent international (France, USA, China, Malaysia, Turkey) histologically confirmed cohorts of patients with NAFLD (external validation cohorts). This study is registered with ClinicalTrials.gov, number NCT01985009.
FINDINGS
Between March 20, 2014, and Jan 17, 2017, 350 patients with suspected NAFLD attending liver clinics in England were prospectively enrolled in the derivation cohort. The most predictive model combined LSM, CAP, and AST, and was designated FAST (FibroScan-AST). Performance was satisfactory in the derivation dataset (C-statistic 0·80, 95% CI 0·76–0·85) and was well calibrated. In external validation cohorts, calibration of the score was satisfactory and discrimination was good across the full range of validation cohorts (C-statistic range 0·74–0·95, 0·85; 95% CI 0·83–0·87 in the pooled external validation patients' cohort; n=1026). Cutoff was 0·35 for sensitivity of 0·90 or greater and 0·67 for specificity of 0·90 or greater in the derivation cohort, leading to a positive predictive value (PPV) of 0·83 (84/101) and a negative predictive value (NPV) of 0·85 (93/110). In the external validation cohorts, PPV ranged from 0·33 to 0·81 and NPV from 0·73 to 1·0.
INTERPRETATION
The FAST score provides an efficient way to non-invasively identify patients at risk of progressive NASH for clinical trials or treatments when they become available, and thereby reduce unnecessary liver biopsy in patients unlikely to have significant disease
Spatio-temporal Models of Lymphangiogenesis in Wound Healing
Several studies suggest that one possible cause of impaired wound healing is
failed or insufficient lymphangiogenesis, that is the formation of new
lymphatic capillaries. Although many mathematical models have been developed to
describe the formation of blood capillaries (angiogenesis), very few have been
proposed for the regeneration of the lymphatic network. Lymphangiogenesis is a
markedly different process from angiogenesis, occurring at different times and
in response to different chemical stimuli. Two main hypotheses have been
proposed: 1) lymphatic capillaries sprout from existing interrupted ones at the
edge of the wound in analogy to the blood angiogenesis case; 2) lymphatic
endothelial cells first pool in the wound region following the lymph flow and
then, once sufficiently populated, start to form a network. Here we present two
PDE models describing lymphangiogenesis according to these two different
hypotheses. Further, we include the effect of advection due to interstitial
flow and lymph flow coming from open capillaries. The variables represent
different cell densities and growth factor concentrations, and where possible
the parameters are estimated from biological data. The models are then solved
numerically and the results are compared with the available biological
literature.Comment: 29 pages, 9 Figures, 6 Tables (39 figure files in total
Key Role of the GITR/GITRLigand Pathway in the Development of Murine Autoimmune Diabetes: A Potential Therapeutic Target
BACKGROUND: The cross-talk between pathogenic T lymphocytes and regulatory T cells (Tregs) plays a major role in the progression of autoimmune diseases. Our objective is to identify molecules and/or pathways involved in this interaction and representing potential targets for innovative therapies. Glucocorticoid-induced tumor necrosis factor receptor (GITR) and its ligand are key players in the T effector/Treg interaction. GITR is expressed at low levels on resting T cells and is significantly up-regulated upon activation. Constitutive high expression of GITR is detected only on Tregs. GITR interacts with its ligand mainly expressed on antigen presenting cells and endothelial cells. It has been suggested that GITR triggering activates effector T lymphocytes while inhibiting Tregs thus contributing to the amplification of immune responses. In this study, we examined the role of GITR/GITRLigand interaction in the progression of autoimmune diabetes. METHODS AND FINDINGS: Treatment of 10-day-old non-obese diabetic (NOD) mice, which spontaneously develop diabetes, with an agonistic GITR-specific antibody induced a significant acceleration of disease onset (80% at 12 weeks of age). This activity was not due to a decline in the numbers or functional capacity of CD4(+)CD25(+)Foxp3(+) Tregs but rather to a major activation of 'diabetogenic' T cells. This conclusion was supported by results showing that anti-GITR antibody exacerbates diabetes also in CD28(-/-) NOD mice, which lack Tregs. In addition, treatment of NOD mice, infused with the diabetogenic CD4(+)BDC2.5 T cell clone, with GITR-specific antibody substantially increased their migration, proliferation and activation within the pancreatic islets and draining lymph nodes. As a mirror image, blockade of the GITR/GITRLigand pathway using a neutralizing GITRLigand-specific antibody significantly protected from diabetes even at late stages of disease progression. Experiments using the BDC2.5 T cell transfer model suggested that the GITRLigand antibody acted by limiting the homing and proliferation of pathogenic T cells in pancreatic lymph nodes. CONCLUSION: GITR triggering plays an important costimulatory role on diabetogenic T cells contributing to the development of autoimmune responses. Therefore, blockade of the GITR/GITRLigand pathway appears as a novel promising clinically oriented strategy as GITRLigand-specific antibody applied at an advanced stage of disease progression can prevent overt diabetes
Noninvasive, Transient and Selective Blood-Brain Barrier Opening in Non-Human Primates In Vivo
The blood-brain barrier (BBB) is a specialized vascular system that impedes entry of all large and the vast majority of small molecules including the most potent central nervous system (CNS) disease therapeutic agents from entering from the lumen into the brain parenchyma. Microbubble-enhanced, focused ultrasound (ME-FUS) has been previously shown to disrupt noninvasively, selectively, and transiently the BBB in small animals in vivo. For the first time, the feasibility of transcranial ME-FUS BBB opening in non-human primates is demonstrated with subsequent BBB recovery. Sonications were combined with two different types of microbubbles (customized 4–5 µm and Definity®). 3T MRI was used to confirm the BBB disruption and to assess brain damage
Practical diagnosis of cirrhosis in non-alcoholic fatty liver disease using currently available non-invasive fibrosis tests
Unlike for advanced liver fibrosis, the practical rules for the early non-invasive diagnosis of cirrhosis in NAFLD remain not well defined. Here, we report the derivation and validation of a stepwise diagnostic algorithm in 1568 patients with NAFLD and liver biopsy coming from four independent cohorts. The study algorithm, using first the elastography-based tests Agile3+ and Agile4 and then the specialized blood tests FibroMeterV3G and CirrhoMeterV3G, provides stratification in four groups, the last of which is enriched in cirrhosis (71% prevalence in the validation set). A risk prediction chart is also derived to allow estimation of the individual probability of cirrhosis. The predicted risk shows excellent calibration in the validation set, and mean difference with perfect prediction is only −2.9%. These tools improve the personalized non-invasive diagnosis of cirrhosis in NAFLD
Humoral and Cellular CMV Responses in Healthy Donors; Identification of a Frequent Population of CMV-Specific, CD4+ T Cells in Seronegative Donors
CMV status is an important risk factor in immune compromised patients. In hematopoeitic cell transplantations (HCT), both donor and recipient are tested routinely for CMV status by serological assays; however, one might argue that it might also be of relevance to examine CMV status by cellular (i.e., T lymphocyte) assays. Here, we have analyzed the CMV status of 100 healthy blood bank donors using both serology and cellular assays. About half (56%) were found to be CMV seropositive, and they all mounted strong CD8+ and/or moderate CD4+ T cell responses ex vivo against the immunodominant CMV protein, pp65. Of the 44 seronegative donors, only five (11%) mounted ex vivo T cell responses; surprisingly, 33 (75%) mounted strong CD4+ T cell responses after a brief in vitro peptide stimulation culture. This may have significant implications for the analysis and selection of HCT donors
Accurate non-invasive diagnosis and staging of non-alcoholic fatty liver disease using the urinary steroid metabolome
Background The development of accurate, non-invasive markers to diagnose and stage non-alcoholic fatty liver disease (NAFLD) is critical to reduce the need for an invasive liver biopsy and to identify patients who are at the highest risk of hepatic and cardio-metabolic complications. Disruption of steroid hormone metabolic pathways has been described in patients with NAFLD. Aim(s) To assess the hypothesis that assessment of the urinary steroid metabolome may provide a novel, non-invasive biomarker strategy to stage NAFLD. Methods We analysed the urinary steroid metabolome in 275 subjects (121 with biopsy-proven NAFLD, 48 with alcohol-related cirrhosis and 106 controls), using gas chromatography-mass spectrometry (GC-MS) coupled with machine learning-based Generalised Matrix Learning Vector Quantisation (GMLVQ) analysis. Results Generalised Matrix Learning Vector Quantisation analysis achieved excellent separation of early (F0-F2) from advanced (F3-F4) fibrosis (AUC receiver operating characteristics [ROC]: 0.92 [0.91-0.94]). Furthermore, there was near perfect separation of controls from patients with advanced fibrotic NAFLD (AUC ROC = 0.99 [0.98-0.99]) and from those with NAFLD cirrhosis (AUC ROC = 1.0 [1.0-1.0]). This approach was also able to distinguish patients with NAFLD cirrhosis from those with alcohol-related cirrhosis (AUC ROC = 0.83 [0.81-0.85]). Conclusions Unbiased GMLVQ analysis of the urinary steroid metabolome offers excellent potential as a non-invasive biomarker approach to stage NAFLD fibrosis as well as to screen for NAFLD. A highly sensitive and specific urinary biomarker is likely to have clinical utility both in secondary care and in the broader general population within primary care and could significantly decrease the need for liver biopsy
Mechanisms of T cell organotropism
F.M.M.-B. is supported by the British Heart Foundation, the Medical Research Council of the UK and the Gates Foundation
- …