29 research outputs found

    Theory of dynamic crack branching in brittle materials

    Full text link
    The problem of dynamic symmetric branching of an initial single brittle crack propagating at a given speed under plane loading conditions is studied within a continuum mechanics approach. Griffith's energy criterion and the principle of local symmetry are used to determine the cracks paths. The bifurcation is predicted at a given critical speed and at a specific branching angle: both correlated very well with experiments. The curvature of the subsequent branches is also studied: the sign of TT, with TT being the non singular stress at the initial crack tip, separates branches paths that diverge from or converge to the initial path, a feature that may be tested in future experiments. The model rests on a scenario of crack branching with some reasonable assumptions based on general considerations and in exact dynamic results for anti-plane branching. It is argued that it is possible to use a static analysis of the crack bifurcation for plane loading as a good approximation to the dynamical case. The results are interesting since they explain within a continuum mechanics approach the main features of the branching instabilities of fast cracks in brittle materials, i.e. critical speeds, branching angle and the geometry of subsequent branches paths.Comment: 41 pages, 15 figures. Accepted to International Journal of Fractur

    Unified force law for granular impact cratering

    Full text link
    Experiments on the low-speed impact of solid objects into granular media have been used both to mimic geophysical events and to probe the unusual nature of the granular state of matter. Observations have been interpreted in terms of conflicting stopping forces: product of powers of projectile depth and speed; linear in speed; constant, proportional to the initial impact speed; and proportional to depth. This is reminiscent of high-speed ballistics impact in the 19th and 20th centuries, when a plethora of empirical rules were proposed. To make progress, we developed a means to measure projectile dynamics with 100 nm and 20 us precision. For a 1-inch diameter steel sphere dropped from a wide range of heights into non-cohesive glass beads, we reproduce prior observations either as reasonable approximations or as limiting behaviours. Furthermore, we demonstrate that the interaction between projectile and medium can be decomposed into the sum of velocity-dependent inertial drag plus depth-dependent friction. Thus we achieve a unified description of low-speed impact phenomena and show that the complex response of granular materials to impact, while fundamentally different from that of liquids and solids, can be simply understood

    A Motor Function for the DEAD-Box RNA Helicase, Gemin3, in Drosophila

    Get PDF
    The survival motor neuron (SMN) protein, the determining factor for spinal muscular atrophy (SMA), is complexed with a group of proteins in human cells. Gemin3 is the only RNA helicase in the SMN complex. Here, we report the identification of Drosophila melanogaster Gemin3 and investigate its function in vivo. Like in vertebrates, Gemin3 physically interacts with SMN in Drosophila. Loss of function of gemin3 results in lethality at larval and/or prepupal stages. Before they die, gemin3 mutant larvae exhibit declined mobility and expanded neuromuscular junctions. Expression of a dominant-negative transgene and knockdown of Gemin3 in mesoderm cause lethality. A less severe Gemin3 disruption in developing muscles leads to flightless adults and flight muscle degeneration. Our findings suggest that Drosophila Gemin3 is required for larval development and motor function

    Development of structural order during supercooling of a fragile oxide melt

    No full text
    4 pagesInternational audienceThe authors have studied the structural evolution of the fragile glass-forming liquid CaAl2O4 during supercooling from the stable liquid phase to the cold glass below Tg. The evolution is characterized by a sharpening of the first diffraction peak and a shortening of the average nearest-neighbor bond length around 1.25Tg, indicating an increase in the degree of both intermediate-range and short-range orders occurring close to the dynamical crossover temperature. The cooling curve developed a kink at this temperature, indicating a simultaneous change in thermodynamic properties

    Synchrotron radiation diffraction from two-dimensional protein crystals at the air/water interface.

    No full text
    Protein structure determination by classical x-ray crystallography requires three-dimensional crystals that are difficult to obtain for most proteins and especially for membrane proteins. An alternative is to grow two-dimensional (2D) crystals by adsorbing proteins to ligand-lipid monolayers at the surface of water. This confined geometry requires only small amounts of material and offers numerous advantages: self-assembly and ordering over micrometer scales is easier to obtain in two dimensions; although fully hydrated, the crystals are sufficiently rigid to be investigated by various techniques, such as electron crystallography or micromechanical measurements. Here we report structural studies, using grazing incidence synchrotron x-ray diffraction, of three different 2D protein crystals at the air-water interface, namely streptavidine, annexin V, and the transcription factor HupR. Using a set-up of high angular resolution, we observe narrow Bragg reflections showing long-range crystalline order in two dimensions. In the case of streptavidin the angular range of the observed diffraction corresponds to a resolution of 10 A in plane and 14 A normal to the plane. We show that this approach is complementary to electron crystallography but without the need for transfer of the monolayer onto a grid. Moreover, as the 2D crystals are accessible from the buffer solution, the formation and structure of protein complexes can be investigated in situ
    corecore