15 research outputs found

    Unsupervised movement onset detection from EEG recorded during self-paced real hand movement

    No full text
    This article presents an unsupervised method for movement onset detection from electroencephalography (EEG) signals recorded during self-paced real hand movement. A Gaussian Mixture Model (GMM) is used to model the movement and idle-related EEG data. The GMM built along with appropriate classification and post processing methods are used to detect movement onsets using self-paced EEG signals recorded from five subjects, achieving True-False rate difference between 63 and 98%. The results show significant performance enhancement using the proposed unsupervised method, both in the sample-by-sample classification accuracy and the event-by-event performance, in comparison with the state-of-the-art supervised methods. The effectiveness of the proposed method suggests its potential application in self-paced Brain-Computer Interfaces (BCI). © 2009 International Federation for Medical and Biological Engineering

    Toward a Semi-Self-Paced EEG Brain Computer Interface: Decoding Initiation State from Non-Initiation State in Dedicated Time Slots

    Get PDF
    Brain computer interfaces (BCIs) offer a broad class of neurologically impaired individuals an alternative means to interact with the environment. Many BCIs are “synchronous” systems, in which the system sets the timing of the interaction and tries to infer what control command the subject is issuing at each prompting. In contrast, in “asynchronous” BCIs subjects pace the interaction and the system must determine when the subject’s control command occurs. In this paper we propose a new idea for BCI which draws upon the strengths of both approaches. The subjects are externally paced and the BCI is able to determine when control commands are issued by decoding the subject’s intention for initiating control in dedicated time slots. A single task with randomly interleaved trials was designed to test whether it can be used as stimulus for inducing initiation and non-initiation states when the sensory and motor requirements for the two types of trials are very nearly identical. Further, the essential problem on the discrimination between initiation state and non-initiation state was studied. We tested the ability of EEG spectral power to distinguish between these two states. Among the four standard EEG frequency bands, beta band power recorded over parietal-occipital cortices provided the best performance, achieving an average accuracy of 86% for the correct classification of initiation and non-initiation states. Moreover, delta band power recorded over parietal and motor areas yielded a good performance and thus could also be used as an alternative feature to discriminate these two mental states. The results demonstrate the viability of our proposed idea for a BCI design based on conventional EEG features. Our proposal offers the potential to mitigate the signal detection challenges of fully asynchronous BCIs, while providing greater flexibility to the subject than traditional synchronous BCIs
    corecore