46 research outputs found

    HIV Treatment as Prevention: Considerations in the Design, Conduct, and Analysis of Cluster Randomized Controlled Trials of Combination HIV Prevention

    Get PDF
    The rigorous evaluation of the impact of combination HIV prevention packages at the population level will be critical for the future of HIV prevention. In this review, we discuss important considerations for the design and interpretation of cluster randomized controlled trials (C-RCTs) of combination prevention interventions. We focus on three large C-RCTs that will start soon and are designed to test the hypothesis that combination prevention packages, including expanded access to antiretroviral therapy, can substantially reduce HIV incidence. Using a general framework to integrate mathematical modelling analysis into the design, conduct, and analysis of C-RCTs will complement traditional statistical analyses and strengthen the evaluation of the interventions. Importantly, even with combination interventions, it may be challenging to substantially reduce HIV incidence over the 2- to 3-y duration of a C-RCT, unless interventions are scaled up rapidly and key populations are reached. Thus, we propose the innovative use of mathematical modelling to conduct interim analyses, when interim HIV incidence data are not available, to allow the ongoing trials to be modified or adapted to reduce the likelihood of inconclusive outcomes. The preplanned, interactive use of mathematical models during C-RCTs will also provide a valuable opportunity to validate and refine model projections

    Rectal Transmission of Transmitted/Founder HIV-1 Is Efficiently Prevented by Topical 1% Tenofovir in BLT Humanized Mice

    Get PDF
    Rectal microbicides are being developed to prevent new HIV infections in both men and women. We focused our in vivo preclinical efficacy study on rectally-applied tenofovir. BLT humanized mice (n = 43) were rectally inoculated with either the primary isolate HIV-1(JRCSF) or the MSM-derived transmitted/founder (T/F) virus HIV-1(THRO) within 30 minutes following treatment with topical 1% tenofovir or vehicle. Under our experimental conditions, in the absence of drug treatment we observed 50% and 60% rectal transmission by HIV-1(JRCSF) and HIV-1(THRO), respectively. Topical tenofovir reduced rectal transmission to 8% (1/12; log rank p = 0.03) for HIV-1(JRCSF) and 0% (0/6; log rank p = 0.02) for HIV-1(THRO). This is the first demonstration that any human T/F HIV-1 rectally infects humanized mice and that transmission of the T/F virus can be efficiently blocked by rectally applied 1% tenofovir. These results obtained in BLT mice, along with recent ex vivo, Phase 1 trial and non-human primate reports, provide a critically important step forward in the development of tenofovir-based rectal microbicides

    HIV Epidemic Appraisals for Assisting in the Design of Effective Prevention Programmes: Shifting the Paradigm Back to Basics

    Get PDF
    To design HIV prevention programmes, it is critical to understand the temporal and geographic aspects of the local epidemic and to address the key behaviours that drive HIV transmission. Two methods have been developed to appraise HIV epidemics and guide prevention strategies. The numerical proxy method classifies epidemics based on current HIV prevalence thresholds. The Modes of Transmission (MOT) model estimates the distribution of incidence over one year among risk-groups. Both methods focus on the current state of an epidemic and provide short-term metrics which may not capture the epidemiologic drivers. Through a detailed analysis of country and sub-national data, we explore the limitations of the two traditional methods and propose an alternative approach.We compared outputs of the traditional methods in five countries for which results were published, and applied the numeric and MOT model to India and six districts within India. We discovered three limitations of the current methods for epidemic appraisal: (1) their results failed to identify the key behaviours that drive the epidemic; (2) they were difficult to apply to local epidemics with heterogeneity across district-level administrative units; and (3) the MOT model was highly sensitive to input parameters, many of which required extraction from non-regional sources. We developed an alternative decision-tree framework for HIV epidemic appraisals, based on a qualitative understanding of epidemiologic drivers, and demonstrated its applicability in India. The alternative framework offered a logical algorithm to characterize epidemics; it required minimal but key data.Traditional appraisals that utilize the distribution of prevalent and incident HIV infections in the short-term could misguide prevention priorities and potentially impede efforts to halt the trajectory of the HIV epidemic. An approach that characterizes local transmission dynamics provides a potentially more effective tool with which policy makers can design intervention programmes

    Uterine Epithelial Cell Regulation of DC-SIGN Expression Inhibits Transmitted/Founder HIV-1 Trans Infection by Immature Dendritic Cells

    Get PDF
    Sexual transmission accounts for the majority of HIV-1 infections. In over 75% of cases, infection is initiated by a single variant (transmitted/founder virus). However, the determinants of virus selection during transmission are unknown. Host cell-cell interactions in the mucosa may be critical in regulating susceptibility to infection. We hypothesized in this study that specific immune modulators secreted by uterine epithelial cells modulate susceptibility of dendritic cells (DC) to infection with HIV-1.Here we report that uterine epithelial cell secretions (i.e. conditioned medium, CM) decreased DC-SIGN expression on immature dendritic cells via a transforming growth factor beta (TGF-β) mechanism. Further, CM inhibited dendritic cell-mediated trans infection of HIV-1 expressing envelope proteins of prototypic reference. Similarly, CM inhibited trans infection of HIV-1 constructs expressing envelopes of transmitted/founder viruses, variants that are selected during sexual transmission. In contrast, whereas recombinant TGF- β1 inhibited trans infection of prototypic reference HIV-1 by dendritic cells, TGF-β1 had a minimal effect on trans infection of transmitted/founder variants irrespective of the reporter system used to measure trans infection.Our results provide the first direct evidence for uterine epithelial cell regulation of dendritic cell transmission of infection with reference and transmitted/founder HIV-1 variants. These findings have immediate implications for designing strategies to prevent sexual transmission of HIV-1

    Differences between seven measures of self-reported numbers of clients of female sex workers in southern India: implications for individual- and population-level analysis.

    No full text
    Quantifying sexual activity of sub-populations with high-risk sexual behaviour is important in understanding HIV epidemiology. This study examined inconsistency of seven outcomes measuring self-reported clients per month (CPM) of female sex workers (FSWs) in southern India and implications for individual/population-level analysis. Multivariate negative binomial regression was used to compare key social/environmental factors associated with each outcome. A transmission dynamics model was used to assess the impact of differences between outcomes on population-level FSW/client HIV prevalence. Outcomes based on 'clients per last working day' produced lower estimates than those based on 'clients per typical day'. Although the outcomes were strongly correlated, their averages differed by approximately two-fold (range 39.0-79.1 CPM). The CPM measure chosen did not greatly influence standard epidemiological 'risk factor' analysis. Differences across outcomes influenced HIV prevalence predictions. Due to this uncertainty, we recommend basing population-based estimates on the range of outcomes, particularly when assessing the impact of interventions

    Dietary phytochemicals, HDAC inhibition, and DNA damage/repair defects in cancer cells

    Get PDF
    Genomic instability is a common feature of cancer etiology. This provides an avenue for therapeutic intervention, since cancer cells are more susceptible than normal cells to DNA damaging agents. However, there is growing evidence that the epigenetic mechanisms that impact DNA methylation and histone status also contribute to genomic instability. The DNA damage response, for example, is modulated by the acetylation status of histone and non-histone proteins, and by the opposing activities of histone acetyltransferase and histone deacetylase (HDAC) enzymes. Many HDACs overexpressed in cancer cells have been implicated in protecting such cells from genotoxic insults. Thus, HDAC inhibitors, in addition to unsilencing tumor suppressor genes, also can silence DNA repair pathways, inactivate non-histone proteins that are required for DNA stability, and induce reactive oxygen species and DNA double-strand breaks. This review summarizes how dietary phytochemicals that affect the epigenome also can trigger DNA damage and repair mechanisms. Where such data is available, examples are cited from studies in vitro and in vivo of polyphenols, organosulfur/organoselenium compounds, indoles, sesquiterpene lactones, and miscellaneous agents such as anacardic acid. Finally, by virtue of their genetic and epigenetic mechanisms, cancer chemopreventive agents are being redefined as chemo- or radio-sensitizers. A sustained DNA damage response coupled with insufficient repair may be a pivotal mechanism for apoptosis induction in cancer cells exposed to dietary phytochemicals. Future research, including appropriate clinical investigation, should clarify these emerging concepts in the context of both genetic and epigenetic mechanisms dysregulated in cancer, and the pros and cons of specific dietary intervention strategies
    corecore