1,476 research outputs found
Lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA)
The results are presented of flight experiments to determine the lateral-directional stability and control characteristics of the Quiet Short-Haul Research Aircraft (QSRA), an experimental aircraft designed to furnish information on various aerodynamic characteristics of a transport type of airplane that makes use of the upper-surface blown (USB) flap technology to achieve short takeoff and landing (STOL) performance. The flight program designed to acquire the data consisted of maneuvers produced by rudder and control-wheel inputs with the airplane in several configurations that had been proposed for landing approach and takeoff operation. The normal stability augmentation system was not engaged during these maneuvers. Time-history records from the maneuvers were analyzed with a parameter estimation procedure to extract lateral-directional stability and control derivatives. For one aircraft configuration in which the USB flaps were deflected 50 deg, several maneuvers were performed to determine the effects of varying the average angle of attack, varying the thrust coefficient, and setting the airplane's upper surface spoilers at a 13 deg symmetrical bias angle . The effects on the lateral characteristics of deflecting the spoilers were rather small and generally favorable. The data indicate that for one test, conducted at low thrust (a thrust coefficient of 0.38), compared with results from tests at thrust coefficients of 0.77 and larger, there was a significant decrease in the lateral control effectiveness, in the yaw damping and in the directional derivative. The directional derivative was also decreased (by about 30 percent) when the average angle of attack of the test was increased from 3 to 16 deg
Bloch-Redfield equations for modeling light-harvesting complexes
We challenge the misconception that Bloch-Redfield equations are a less
powerful tool than phenomenological Lindblad equations for modeling exciton
transport in photosynthetic complexes. This view predominantly originates from
an indiscriminate use of the secular approximation. We provide a detailed
description of how to model both coherent oscillations and several types of
noise, giving explicit examples. All issues with non-positivity are overcome by
a consistent straightforward physical noise model. Herein also lies the
strength of the Bloch-Redfield approach because it facilitates the analysis of
noise-effects by linking them back to physical parameters of the noise
environment. This includes temporal and spatial correlations and the strength
and type of interaction between the noise and the system of interest. Finally
we analyze a prototypical dimer system as well as a 7-site Fenna-Matthews-Olson
(FMO) complex in regards to spatial correlation length of the noise, noise
strength, temperature and their connection to the transfer time and transfer
Noninvasive assessment of diffusion hypoxia following administration of nitrous oxide-oxygen.
The phenomenon of diffusion hypoxia is commonly believed to occur unless nitrous oxide-oxygen inhalation sedation is followed by washout with 100% oxygen for 5 minutes upon termination of the flow of nitrous oxide. When systematically studied, however, this phenomenon generally appears to be unfounded. The present study evaluated the effect of breathing room air instead of 100% oxygen in healthy (ASA 1) human volunteers following administration of sedative concentrations of nitrous oxide. The occurrence of hypoxia was determined objectively, using pulse oximetry and a standardized psychomotor skills test (Trieger test). Diffusion hypoxia was not observed using these criteria
- …