13,504 research outputs found

    Putting fear in its place: remapping of hippocampal place cells during fear conditioning

    Get PDF
    We recorded hippocampal place cells in two spatial environments: a training environment in which rats underwent fear conditioning and a neutral control environment. Fear conditioning caused many place cells to alter ( or remap) their preferred firing locations in the training environment, whereas most cells remained stable in the control environment. This finding indicates that aversive reinforcement can induce place cell remapping even when the environment itself remains unchanged. Furthermore, contextual fear conditioning caused significantly more remapping of place cells than auditory fear conditioning, suggesting that place cell remapping was related to the rat's learned fear of the environment. These results suggest that one possible function of place cell remapping may be to generate new spatial representations of a single environment, which could help the animal to discriminate among different motivational contexts within that environment

    Neurotrophin 3 induces structural and functional modification of synapses through distinct molecular mechanisms

    Get PDF
    The mechanisms by which neurotrophins elicit long-term structural and functional changes of synapses are not known. We report the mechanistic separation of functional and structural synaptic regulation by neurotrophin 3 (NT-3), using the neuromuscular synapse as a model. Inhibition of cAMP response element (CRE)–binding protein (CREB)–mediated transcription blocks the enhancement of transmitter release elicited by NT-3, without affecting the synaptic varicosity of the presynaptic terminals. Further analysis indicates that CREB is activated through Ca2+/calmodulin-dependent kinase IV (CaMKIV) pathway, rather than the mitogen-activated protein kinase (MAPK) or cAMP pathway. In contrast, inhibition of MAPK prevents the NT-3–induced structural, but not functional, changes. Genetic and imaging experiments indicate that the small GTPase Rap1, but not Ras, acts upstream of MAPK activation by NT-3. Thus, NT-3 initiates parallel structural and functional modifications of synapses through the Rap1–MAPK and CaMKIV–CREB pathways, respectively. These findings may have implications in the general mechanisms of long-term synaptic modulation by neurotrophins

    A memetic algorithm with adaptive hill climbing strategy for dynamic optimization problems

    Get PDF
    Copyright @ Springer-Verlag 2008Dynamic optimization problems challenge traditional evolutionary algorithms seriously since they, once converged, cannot adapt quickly to environmental changes. This paper investigates the application of memetic algorithms, a class of hybrid evolutionary algorithms, for dynamic optimization problems. An adaptive hill climbing method is proposed as the local search technique in the framework of memetic algorithms, which combines the features of greedy crossover-based hill climbing and steepest mutation-based hill climbing. In order to address the convergence problem, two diversity maintaining methods, called adaptive dual mapping and triggered random immigrants, respectively, are also introduced into the proposed memetic algorithm for dynamic optimization problems. Based on a series of dynamic problems generated from several stationary benchmark problems, experiments are carried out to investigate the performance of the proposed memetic algorithm in comparison with some peer evolutionary algorithms. The experimental results show the efficiency of the proposed memetic algorithm in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant Nos. 70431003 and 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, and the National Support Plan of China under Grant No. 2006BAH02A09 and the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01

    Deciphering interplay between Salmonella invasion effectors

    Get PDF
    Bacterial pathogens have evolved a specialized type III secretion system (T3SS) to translocate virulence effector proteins directly into eukaryotic target cells. Salmonellae deploy effectors that trigger localized actin reorganization to force their own entry into non-phagocytic host cells. Six effectors (SipC, SipA, SopE/2, SopB, SptP) can individually manipulate actin dynamics at the plasma membrane, which acts as a ‘signaling hub’ during Salmonella invasion. The extent of crosstalk between these spatially coincident effectors remains unknown. Here we describe trans and cis binary entry effector interplay (BENEFIT) screens that systematically examine functional associations between effectors following their delivery into the host cell. The results reveal extensive ordered synergistic and antagonistic relationships and their relative potency, and illuminate an unexpectedly sophisticated signaling network evolved through longstanding pathogen–host interaction

    Optical Gating of Resonance Fluorescence from a Single Germanium Vacancy Color Center in Diamond

    Full text link
    © 2019 American Physical Society. Scalable quantum photonic networks require coherent excitation of quantum emitters. However, many solid-state systems can undergo a transition to a dark shelving state that inhibits the resonance fluorescence. Here, we demonstrate that by a controlled gating using a weak nonresonant laser, the resonant fluorescence can be recovered and amplified for single germanium vacancies. Employing the gated resonance excitation, we achieve optically stable resonance fluorescence of germanium vacancy centers. Our results are pivotal for the deployment of diamond color centers as reliable building blocks for scalable solid-state quantum networks

    Visualizing the microscopic coexistence of spin density wave and superconductivity in underdoped NaFe1-xCoxAs

    Full text link
    Although the origin of high temperature superconductivity in the iron pnictides is still under debate, it is widely believed that magnetic interactions or fluctuations play an important role in triggering Cooper pairing. Because of the relevance of magnetism to pairing, the question of whether long range spin magnetic order can coexist with superconductivity microscopically has attracted strong interests. The available experimental methods used to answer this question are either bulk probes or local ones without control of probing position, thus the answers range from mutual exclusion to homogeneous coexistence. To definitively answer this question, here we use scanning tunneling microscopy to investigate the local electronic structure of an underdoped NaFe1-xCoxAs near the spin density wave (SDW) and superconducting (SC) phase boundary. Spatially resolved spectroscopy directly reveal both the SDW and SC gap features at the same atomic location, providing compelling evidence for the microscopic coexistence of the two phases. The strengths of the SDW and SC features are shown to anti correlate with each other, indicating the competition of the two orders. The microscopic coexistence clearly indicates that Cooper pairing occurs when portions of the Fermi surface (FS) are already gapped by the SDW order. The regime TC < T < TSDW thus show a strong resemblance to the pseudogap phase of the cuprates where growing experimental evidences suggest a FS reconstruction due to certain density wave order. In this phase of the pnictides, the residual FS has a favorable topology for magnetically mediated pairing when the ordering moment of the SDW is small.Comment: 18 pages, 4 figure

    Approximate Proximal Point Algorithms for Finding Zeroes of Maximal Monotone Operators in Hilbert Spaces

    Full text link
    Let H be a real Hilbert space, Ω a nonempty closed convex subset of H, and T:Ω→2H a maximal monotone operator with T−10 ≠ ∅. Let PΩ be the metric projection of H onto Ω. Suppose that, for any given xn∈H, βn>0, and en∈H, there exists x̄n∈Ω satisfying the following set-valued mapping equation: xn+en∈x¯n+βnT(x¯n) for all n≥0, where {βn}⊂(0,+∞) with βn→+∞ as n→∞ and {en} is regarded as an error sequence such that ∑n=0∞‖en‖2<+∞. Let {αn}⊂(0,1] be a real sequence such that αn→0 as n→∞ and ∑n=0∞αn=∞. For any fixed u∈Ω, define a sequence {xn} iteratively as xn+1=αnu+(1−αn)PΩ(x¯n−en) for all n≥0. Then {xn} converges strongly to a point z∈T−10 as n→∞, where z=limt→∞Jtu

    Intelligent Financial Fraud Detection Practices: An Investigation

    Full text link
    Financial fraud is an issue with far reaching consequences in the finance industry, government, corporate sectors, and for ordinary consumers. Increasing dependence on new technologies such as cloud and mobile computing in recent years has compounded the problem. Traditional methods of detection involve extensive use of auditing, where a trained individual manually observes reports or transactions in an attempt to discover fraudulent behaviour. This method is not only time consuming, expensive and inaccurate, but in the age of big data it is also impractical. Not surprisingly, financial institutions have turned to automated processes using statistical and computational methods. This paper presents a comprehensive investigation on financial fraud detection practices using such data mining methods, with a particular focus on computational intelligence-based techniques. Classification of the practices based on key aspects such as detection algorithm used, fraud type investigated, and success rate have been covered. Issues and challenges associated with the current practices and potential future direction of research have also been identified.Comment: Proceedings of the 10th International Conference on Security and Privacy in Communication Networks (SecureComm 2014
    corecore