60 research outputs found
Policy design for the Anthropocene
This is the author accepted manuscript. The final version is available from Nature Research via the DOI in this recordToday, more than ever, ‘Spaceship Earth’ is an apt metaphor as we chart the boundaries for a safe planet1. Social scientists both analyse why society courts disaster by approaching or even overstepping these boundaries and try to design suitable policies to avoid these perils. Because the threats of transgressing planetary boundaries are global, long-run, uncertain and interconnected, they must be analysed together to avoid conflicts and take advantage of synergies. To obtain policies that are effective at both international and local levels requires careful analysis of the underlying mechanisms across scientific disciplines and approaches, and must take politics into account. In this Perspective, we examine the complexities of designing policies that can keep Earth within the biophysical limits favourable to human life.Stockholm Resilience CentreBECC - Biodiversity and Ecosystem services in a Changing ClimateMistra Carbon Exi
Engineering HIV-Resistant Human CD4+ T Cells with CXCR4-Specific Zinc-Finger Nucleases
HIV-1 entry requires the cell surface expression of CD4 and either the CCR5 or CXCR4 coreceptors on host cells. Individuals homozygous for the ccr5Δ32 polymorphism do not express CCR5 and are protected from infection by CCR5-tropic (R5) virus strains. As an approach to inactivating CCR5, we introduced CCR5-specific zinc-finger nucleases into human CD4+ T cells prior to adoptive transfer, but the need to protect cells from virus strains that use CXCR4 (X4) in place of or in addition to CCR5 (R5X4) remains. Here we describe engineering a pair of zinc finger nucleases that, when introduced into human T cells, efficiently disrupt cxcr4 by cleavage and error-prone non-homologous DNA end-joining. The resulting cells proliferated normally and were resistant to infection by X4-tropic HIV-1 strains. CXCR4 could also be inactivated in ccr5Δ32 CD4+ T cells, and we show that such cells were resistant to all strains of HIV-1 tested. Loss of CXCR4 also provided protection from X4 HIV-1 in a humanized mouse model, though this protection was lost over time due to the emergence of R5-tropic viral mutants. These data suggest that CXCR4-specific ZFNs may prove useful in establishing resistance to CXCR4-tropic HIV for autologous transplant in HIV-infected individuals
The HIV-1 transmission bottleneck
It is well established that most new systemic infections of HIV-1 can be traced back to one or a limited number of founder viruses. Usually, these founders are more closely related to minor HIV-1 populations in the blood of the presumed donor than to more abundant lineages. This has led to the widely accepted idea that transmission selects for viral characteristics that facilitate crossing the mucosal barrier of the recipient’s genital tract, although the specific selective forces or advantages are not completely defined. However, there are other steps along the way to becoming a founder virus at which selection may occur. These steps include the transition from the donor’s general circulation to the genital tract compartment, survival within the transmission fluid, and establishment of a nascent stable local infection in the recipient’s genital tract. Finally, there is the possibility that important narrowing events may also occur during establishment of systemic infection. This is suggested by the surprising observation that the number of founder viruses detected after transmission in intravenous drug users is also limited. Although some of these steps may be heavily selective, others may result mostly in a stochastic narrowing of the available founder pool. Collectively, they shape the initial infection in each recipient
- …