40 research outputs found

    Value of syndromic surveillance within the Armed Forces for early warning during a dengue fever outbreak in French Guiana in 2006

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A dengue fever outbreak occured in French Guiana in 2006. The objectives were to study the value of a syndromic surveillance system set up within the armed forces, compared to the traditional clinical surveillance system during this outbreak, to highlight issues involved in comparing military and civilian surveillance systems and to discuss the interest of syndromic surveillance for public health response.</p> <p>Methods</p> <p>Military syndromic surveillance allows the surveillance of suspected dengue fever cases among the 3,000 armed forces personnel. Within the same population, clinical surveillance uses several definition criteria for dengue fever cases, depending on the epidemiological situation. Civilian laboratory surveillance allows the surveillance of biologically confirmed cases, within the 200,000 inhabitants.</p> <p>Results</p> <p>It was shown that syndromic surveillance detected the dengue fever outbreak several weeks before clinical surveillance, allowing quick and effective enhancement of vector control within the armed forces. Syndromic surveillance was also found to have detected the outbreak before civilian laboratory surveillance.</p> <p>Conclusion</p> <p>Military syndromic surveillance allowed an early warning for this outbreak to be issued, enabling a quicker public health response by the armed forces. Civilian surveillance system has since introduced syndromic surveillance as part of its surveillance strategy. This should enable quicker public health responses in the future.</p

    Cellular and Viral Factors Regulating Merkel Cell Polyomavirus Replication

    Get PDF
    Merkel cell polyomavirus (MCV), a previously unrecognized component of the human viral skin flora, was discovered as a mutated and clonally-integrated virus inserted into Merkel cell carcinoma (MCC) genomes. We reconstructed a replicating MCV clone (MCV-HF), and then mutated viral sites required for replication or interaction with cellular proteins to examine replication efficiency and viral gene expression. Three days after MCV-HF transfection into 293 cells, although replication is not robust, encapsidated viral DNA and protein can be readily isolated by density gradient centrifugation and typical ∼40 nm diameter polyomavirus virions are identified by electron microscopy. The virus has an orderly gene expression cascade during replication in which large T (LT) and 57kT proteins are first expressed by day 2, followed by expression of small T (sT) and VP1 proteins. VP1 and sT proteins are not detected, and spliced 57kT is markedly diminished, in the replication-defective virus suggesting that early gene splicing and late gene transcription may be dependent on viral DNA replication. MCV replication and encapsidation is increased by overexpression of MCV sT, consistent with sT being a limiting factor during virus replication. Mutation of the MCV LT vacuolar sorting protein hVam6p (Vps39) binding site also enhances MCV replication while exogenous hVam6p overexpression reduces MCV virion production by >90%. Although MCV-HF generates encapsidated wild-type MCV virions, we did not find conditions for persistent transmission to recipient cell lines suggesting that MCV has a highly restricted tropism. These studies identify and highlight the role of polyomavirus DNA replication in viral gene expression and show that viral sT and cellular hVam6p are important factors regulating MCV replication. MCV-HF is a molecular clone that can be readily manipulated to investigate factors affecting MCV replication

    Neuropsychological Sequelae of Carotid Angioplasty with Stent Placement: Correlation with Ischemic Lesions in Diffusion Weighted Imaging

    Get PDF
    BACKGROUND AND PURPOSE: Few studies investigated the neuropsychological outcome after carotid angioplasty with stent placement (CAS), yielding partially inconsistent results. The present investigation evaluated the effect of CAS in patients with high-grade stenosis and assessed the predictive value of ischemic lesion number for postinterventional cognitive deterioration. METHODS: 22 patients were tested neuropsychologically before and six weeks after CAS. Cerebral ischemic changes were assessed with diffusion weighted imaging (DWI) prior to and after angioplasty. RESULTS: Pre- to postinterventional cognitive performance improved significantly in terms of verbal memory (t = -2.30; p<0.05), whereas significant deterioration was noted regarding verbal memory span (t = 2.31; p<0.05). 8 (36%) persons conformed to the criteria of cognitive improvement. 6 patients (27%) were postinterventionally classified as having deficits. Analysis yielded no statistically significant correlations between lesion quantity and cognitive change. CONCLUSION: Both improvement and deterioration of cognitive functioning was observed in our collective of patients, leaving the neuropsychological outcome after percutaneous transluminal angioplasty unpredictable in individual cases. The presence of acute ischemic lesions on DWI was found to be not tightly associated with cognitive dysfunction after CAS

    A Novel Secretion Pathway of Salmonella enterica Acts as an Antivirulence Modulator during Salmonellosis

    Get PDF
    Salmonella spp. are Gram-negative enteropathogenic bacteria that infect a variety of vertebrate hosts. Like any other living organism, protein secretion is a fundamental process essential for various aspects of Salmonella biology. Herein we report the identification and characterization of a horizontally acquired, autonomous and previously unreported secretion pathway. In Salmonella enterica serovar Typhimurium, this novel secretion pathway is encoded by STM1669 and STM1668, designated zirT and zirS, respectively. We show that ZirT is localized to the bacterial outer membrane, expected to adopt a compact β-barrel conformation, and functions as a translocator for ZirS. ZirS is an exoprotein, which is secreted into the extracellular environment in a ZirT-dependent manner. The ZirTS secretion pathway was found to share several important features with two-partner secretion (TPS) systems and members of the intimin/invasin family of adhesions. We show that zirTS expression is affected by zinc; and that in vivo, induction of zirT occurs distinctively in Salmonella colonizing the small intestine, but not in systemic sites. Additionally, strong expression of zirT takes place in Salmonella shed in fecal pellets during acute and persistent infections of mice. Inactivation of ZirTS results in a hypervirulence phenotype of Salmonella during oral infection of mice. Cumulatively, these results indicate that the ZirTS pathway plays a unique role as an antivirulence modulator during systemic disease and is involved in fine-tuning a host–pathogen balance during salmonellosis

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke — the second leading cause of death worldwide — were conducted predominantly in populations of European ancestry1,2. Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis3, and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach4, we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry5. Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries

    Thrombocytopenia in malaria: who cares?

    Full text link

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p
    corecore