127 research outputs found

    Screening for Hepatitis C Virus Reinfection Using a Behaviour-Based Risk Score among Men Who Have Sex with Men with HIV: Results from a Case–Control Diagnostic Validation Study

    Full text link
    We assessed the predictive capacity of the HCV-MOSAIC risk score, originally developed for primary early HCV infection, as a screening tool for HCV reinfection in 103 men who have sex with men (MSM) with HIV using data from the MOSAIC cohort, including MSM with HIV/HCV-coinfection who became reinfected (cases, n = 27) or not (controls, n = 76) during follow-up. The overall predictive capacity of the score was assessed using the area under the receiver operating characteristic (AUROC) curve. The effects of covariates on the receiver operating characteristic (ROC) curve were assessed using parametric ROC regression. The score cut-off validated for primary early infection (≥2.0) was used, from which the sensitivity and specificity were calculated. The AUROC was 0.74 (95% confidence interval (CI) = 0.63–0.84). Group sex significantly increased the predictive capacity. Using the validated cut-off, sensitivity was 70.4% (95%CI = 49.8–86.2%) and specificity was 59.2% (95%CI: 47.3–70.4%). External validation from a cohort of 25 cases and 111 controls, all MSM with HIV, resulted in a sensitivity of 44.0% (95%CI = 24.4–65.1) and specificity of 71.2% (95%CI = 61.8–79.4). The HCV-MOSAIC risk score may be useful for identifying individuals at risk of HCV reinfection. In sexual health or HIV-care settings, this score could help guide HCV-RNA testing in MSM with a prior HCV infection

    Membrane protein dynamics: limited lipid control

    Get PDF
    Correlation of lipid disorder with membrane protein dynamics has been studied with infrared spectroscopy, by combining data characterizing lipid phase, protein structure and, via hydrogen-deuterium (H/D) exchange, protein dynamics. The key element was a new measuring scheme, by which the combined effects of time and temperature on the H/D exchange could be separated. Cyanobacterial and plant thylakoid membranes, mammalian mitochondria membranes, and for comparison, lysozyme were investigated. In dissolved lysozyme, as a function of temperature, H/D exchange involved only reversible movements (the secondary structure did not change considerably); heat-denaturing was a separate event at much higher temperature. Around the low-temperature functioning limit of the biomembranes, lipids affected protein dynamics since changes in fatty acyl chain disorders and H/D exchange exhibited certain correlation. H/D exchange remained low in all membranes over physiological temperatures. Around the high-temperature functioning limit of the membranes, the exchange rates became higher. When temperature was further increased, H/D exchange rates went over a maximum and afterwards decreased (due to full H/D exchange and/or protein denaturing). Maximal H/D exchange rate temperatures correlated neither with the disorder nor with the unsaturation of lipids. In membrane proteins, in contrast to lysozyme, the onsets of sizable H/D exchange rates were the onsets of irreversible denaturing as well. Seemingly, at temperatures where protein self-dynamics allows large-scale H/D exchange, lipid-protein coupling is so weak that proteins prefer aggregating to limit the exposure of their hydrophobic surface regions to water. In all membranes studied, dynamics seemed to be governed by lipids around the low-temperature limit, and by proteins around the high-temperature limit of membrane functionality

    First-pass perfusion CMR two days after infarction predicts severity of functional impairment six weeks later in the rat heart

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In humans, dynamic contrast CMR of the first pass of a bolus infusion of Gadolinium-based contrast agent has become a standard technique to identify under-perfused regions of the heart and can accurately demonstrate the severity of myocardial infarction. Despite the clinical importance of this method, it has rarely been applied in small animal models of cardiac disease. In order to identify perfusion delays in the infarcted rat heart, here we present a method in which a T<sub>1 </sub>weighted MR image has been acquired during each cardiac cycle.</p> <p>Methods and results</p> <p>In isolated perfused rat hearts, contrast agent infusion gave uniform signal enhancement throughout the myocardium. Occlusion of the left anterior descending coronary artery significantly reduced the rate of signal enhancement in anterior regions of the heart, demonstrating that the first-pass method was sensitive to perfusion deficits. <it>In vivo </it>measurements of myocardial morphology, function, perfusion and viability were made at 2 and 8 days after infarction. Morphology and function were further assessed using cine-MRI at 42 days. The perfusion delay was larger in rat hearts that went on to develop greater functional impairment, demonstrating that first-pass CMR can be used as an early indicator of infarct severity. First-pass CMR at 2 and 8 days following infarction better predicted outcome than cardiac ejection fraction, end diastolic volume or end systolic volume.</p> <p>Conclusion</p> <p>First-pass CMR provides a predictive measure of the severity of myocardial impairment caused by infarction in a rodent model of heart failure.</p

    Molecular and cellular characterization of ABCG2 in the prostate

    Get PDF
    BACKGROUND: Identification and characterization of the prostate stem cell is important for understanding normal prostate development and carcinogenesis. The flow cytometry-based side population (SP) technique has been developed to isolate putative adult stem cells in several human tissue types including the prostate. This phenotype is mainly mediated by the ATP-binding cassette membrane transporter ABCG2. METHODS: Immunolocalization of ABCG2 was performed on normal prostate tissue obtained from radical prostatectomies. Normal human prostate SP cells and ABCG2(+ )cells were isolated and gene expression was determined with DNA array analysis and RT-PCR. Endothelial cells were removed by pre-sorting with CD31. RESULTS: ABCG2 positive cells were localized to the prostate basal epithelium and endothelium. ABCG2(+ )cells in the basal epithelium constituted less than 1% of the total basal cell population. SP cells constituted 0.5–3% of the total epithelial fraction. The SP transcriptome was essentially the same as ABCG2(+ )and both populations expressed genes indicative of a stem cell phenotype, however, the cells also expressed many genes in common with endothelial cells. CONCLUSION: These results provide gene expression profiles for the prostate SP and ABCG2(+ )cells that will be critical for studying normal development and carcinogenesis, in particular as related to the cancer stem cell concept

    P-glycoprotein and breast cancer resistance protein in acute myeloid leukaemia cells treated with the Aurora-B Kinase Inhibitor barasertib-hQPA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Aurora kinases play an essential role in orchestrating chromosome alignment, segregation and cytokinesis during mitotic progression, with both aurora-A and B frequently over-expressed in a variety of human malignancies. Over-expression of the ABC drug transporter proteins P-glycoprotein (Pgp) and Breast cancer resistance protein (BCRP) is a major obstacle for chemotherapy in many tumour types with Pgp conferring particularly poor prognosis in acute myeloid leukaemia (AML). Barasertib-hQPA is a highly selective inhibitor of aurora-B kinase that has shown tumouricidal activity against a range tumour cell lines including those of leukaemic AML origin.</p> <p>Methods</p> <p>Effect of barasertib-hQPA on the pHH3 biomarker and cell viability was measured in a panel of leukaemic cell lines and 37 primary AML samples by flow cytometry. Pgp status was determined by flow cytometry and BCRP status by flow cytometry and real-time PCR.</p> <p>Results</p> <p>In this study we report the creation of the cell line OCI-AML3DNR, which over-expresses Pgp but not BCRP or multidrug resistance-associated protein (MRP), through prolonged treatment of OCI-AML3 cells with daunorubicin. We demonstrate that Pgp (OCI-AML3DNR and KG-1a) and BCRP (OCI-AML6.2) expressing AML cell lines are less sensitive to barasertib-hQPA induced pHH3 inhibition and subsequent loss of viability compared to transporter negative cell lines. We also show that barasertib-hQPA resistance in these cell lines can be reversed using known Pgp and BCRP inhibitors. We report that barasertib-hQPA is not an inhibitor of Pgp or BCRP, but by using <sup>14</sup>[C]-barasertib-hQPA that it is effluxed by these transporters. Using phosphoHistone H3 (pHH3) as a biomarker of barasertib-hQPA responsiveness in primary AML blasts we determined that Pgp and BCRP positive primary samples were less sensitive to barasertib-hQPA induced pHH3 inhibition (p = <0.001) than samples without these transporters. However, we demonstrate that IC<sub>50 </sub>inhibition of pHH3 by barasertib-hQPA was achieved in 94.6% of these samples after 1 hour drug treatment, in contrast to the resistance of the cell lines.</p> <p>Conclusion</p> <p>We conclude that Pgp and BCRP status and pHH3 down-regulation in patients treated with barasertib should be monitored in order to establish whether transporter-mediated efflux is sufficient to adversely impact on the efficacy of the agent.</p

    Expression, localization and polymorphisms of the nuclear receptor PXR in Barrett's esophagus and esophageal adenocarcinoma

    Get PDF
    Background: The continuous exposure of esophageal epithelium to refluxate may induce ectopic expression of bile-responsive genes and contribute to the development of Barrett's esophagus (BE) and esophageal adenocarcinoma. In normal physiology of the gut and liver, the nuclear receptor Pregnane × Receptor (PXR) is an important factor in the detoxification of xenobiotics and bile acid homeostasis. This study aimed to investigate the expression and genetic variation of PXR in reflux esophagitis (RE), Barrett's esophagus (BE) and esophageal adenocarcinoma.Methods: PXR mRNA levels and protein expression were determined in biopsies from patients with adenocarcinoma, BE, or RE, and healthy controls. Esophageal cell lines were stimulated with lithocholic acid and rifampicin. PXR polymorphisms 25385C/T, 7635A/G, and 8055C/T were genotyped in 249 BE patients, 233 RE patients, and 201 controls matched for age and gender.Results: PXR mRNA levels were significantly higher in adenocarcinoma tissue and columnar Barrett's epithelium, compared to squamous epithelium of these BE patients (P < 0.001), and RE patients (P = 0.003). Immunohistochemical staining of PXR showed predominantly cytoplasmic expression in BE tissue, whereas nuclear expression was found in adenocarcinoma tissue. In cell lines, stimulation with lithocholic acid did not increase PXR mRNA levels, but did induce nuclear translocation of PXR protein. Genotyping of the PXR 7635A/G polymorphism revealed that the G allele was significantly more prevalent in BE than in RE or controls (P = 0.037).Conclusions: PXR expresses in BE and adenocarcinoma tissue, and showed nuclear localization in adenocarcinoma tissue. Upon stimulation with lithocholic acid, PXR translocates to the nuclei of OE19 adenocarcinoma cells. Together with the observed association of a PXR polymorphism and BE, this data implies that PXR may have a function in prediction and treatment of esophageal disease

    Prediction of Promiscuous P-Glycoprotein Inhibition Using a Novel Machine Learning Scheme

    Get PDF
    BACKGROUND: P-glycoprotein (P-gp) is an ATP-dependent membrane transporter that plays a pivotal role in eliminating xenobiotics by active extrusion of xenobiotics from the cell. Multidrug resistance (MDR) is highly associated with the over-expression of P-gp by cells, resulting in increased efflux of chemotherapeutical agents and reduction of intracellular drug accumulation. It is of clinical importance to develop a P-gp inhibition predictive model in the process of drug discovery and development. METHODOLOGY/PRINCIPAL FINDINGS: An in silico model was derived to predict the inhibition of P-gp using the newly invented pharmacophore ensemble/support vector machine (PhE/SVM) scheme based on the data compiled from the literature. The predictions by the PhE/SVM model were found to be in good agreement with the observed values for those structurally diverse molecules in the training set (n = 31, r(2) = 0.89, q(2) = 0.86, RMSE = 0.40, s = 0.28), the test set (n = 88, r(2) = 0.87, RMSE = 0.39, s = 0.25) and the outlier set (n = 11, r(2) = 0.96, RMSE = 0.10, s = 0.05). The generated PhE/SVM model also showed high accuracy when subjected to those validation criteria generally adopted to gauge the predictivity of a theoretical model. CONCLUSIONS/SIGNIFICANCE: This accurate, fast and robust PhE/SVM model that can take into account the promiscuous nature of P-gp can be applied to predict the P-gp inhibition of structurally diverse compounds that otherwise cannot be done by any other methods in a high-throughput fashion to facilitate drug discovery and development by designing drug candidates with better metabolism profile

    ATP-binding cassette (ABC) transporters in normal and pathological lung

    Get PDF
    ATP-binding cassette (ABC) transporters are a family of transmembrane proteins that can transport a wide variety of substrates across biological membranes in an energy-dependent manner. Many ABC transporters such as P-glycoprotein (P-gp), multidrug resistance-associated protein 1 (MRP1) and breast cancer resistance protein (BCRP) are highly expressed in bronchial epithelium. This review aims to give new insights in the possible functions of ABC molecules in the lung in view of their expression in different cell types. Furthermore, their role in protection against noxious compounds, e.g. air pollutants and cigarette smoke components, will be discussed as well as the (mal)function in normal and pathological lung. Several pulmonary drugs are substrates for ABC transporters and therefore, the delivery of these drugs to the site of action may be highly dependent on the presence and activity of many ABC transporters in several cell types. Three ABC transporters are known to play an important role in lung functioning. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene can cause cystic fibrosis, and mutations in ABCA1 and ABCA3 are responsible for respectively Tangier disease and fatal surfactant deficiency. The role of altered function of ABC transporters in highly prevalent pulmonary diseases such as asthma or chronic obstructive pulmonary disease (COPD) have hardly been investigated so far. We especially focused on polymorphisms, knock-out mice models and in vitro results of pulmonary research. Insight in the function of ABC transporters in the lung may open new ways to facilitate treatment of lung diseases

    Molecular biology of the blood-brain and the blood-cerebrospinal fluid barriers: similarities and differences

    Get PDF
    Efficient processing of information by the central nervous system (CNS) represents an important evolutionary advantage. Thus, homeostatic mechanisms have developed that provide appropriate circumstances for neuronal signaling, including a highly controlled and stable microenvironment. To provide such a milieu for neurons, extracellular fluids of the CNS are separated from the changeable environment of blood at three major interfaces: at the brain capillaries by the blood-brain barrier (BBB), which is localized at the level of the endothelial cells and separates brain interstitial fluid (ISF) from blood; at the epithelial layer of four choroid plexuses, the blood-cerebrospinal fluid (CSF) barrier (BCSFB), which separates CSF from the CP ISF, and at the arachnoid barrier. The two barriers that represent the largest interface between blood and brain extracellular fluids, the BBB and the BCSFB, prevent the free paracellular diffusion of polar molecules by complex morphological features, including tight junctions (TJs) that interconnect the endothelial and epithelial cells, respectively. The first part of this review focuses on the molecular biology of TJs and adherens junctions in the brain capillary endothelial cells and in the CP epithelial cells. However, normal function of the CNS depends on a constant supply of essential molecules, like glucose and amino acids from the blood, exchange of electrolytes between brain extracellular fluids and blood, as well as on efficient removal of metabolic waste products and excess neurotransmitters from the brain ISF. Therefore, a number of specific transport proteins are expressed in brain capillary endothelial cells and CP epithelial cells that provide transport of nutrients and ions into the CNS and removal of waste products and ions from the CSF. The second part of this review concentrates on the molecular biology of various solute carrier (SLC) transport proteins at those two barriers and underlines differences in their expression between the two barriers. Also, many blood-borne molecules and xenobiotics can diffuse into brain ISF and then into neuronal membranes due to their physicochemical properties. Entry of these compounds could be detrimental for neural transmission and signalling. Thus, BBB and BCSFB express transport proteins that actively restrict entry of lipophilic and amphipathic substances from blood and/or remove those molecules from the brain extracellular fluids. The third part of this review concentrates on the molecular biology of ATP-binding cassette (ABC)-transporters and those SLC transporters that are involved in efflux transport of xenobiotics, their expression at the BBB and BCSFB and differences in expression in the two major blood-brain interfaces. In addition, transport and diffusion of ions by the BBB and CP epithelium are involved in the formation of fluid, the ISF and CSF, respectively, so the last part of this review discusses molecular biology of ion transporters/exchangers and ion channels in the brain endothelial and CP epithelial cells
    corecore