509 research outputs found

    Full-length cDNA sequences from Rhesus monkey placenta tissue: analysis and utility for comparative mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rhesus monkeys (<it>Macaca mulatta</it>) are widely-used as experimental animals in biomedical research and are closely related to other laboratory macaques, such as cynomolgus monkeys (<it>Macaca </it><it>fascicularis</it>), and to humans, sharing a last common ancestor from about 25 million years ago. Although rhesus monkeys have been studied extensively under field and laboratory conditions, research has been limited by the lack of genetic resources. The present study generated placenta full-length cDNA libraries, characterized the resulting expressed sequence tags, and described their utility for comparative mapping with human RefSeq mRNA transcripts.</p> <p>Results</p> <p>From rhesus monkey placenta full-length cDNA libraries, 2000 full-length cDNA sequences were determined and 1835 rhesus placenta cDNA sequences longer than 100 bp were collected. These sequences were annotated based on homology to human genes. Homology search against human RefSeq mRNAs revealed that our collection included the sequences of 1462 putative rhesus monkey genes. Moreover, we identified 207 genes containing exon alterations in the coding region and the untranslated region of rhesus monkey transcripts, despite the highly conserved structure of the coding regions. Approximately 10% (187) of all full-length cDNA sequences did not represent any public human RefSeq mRNAs. Intriguingly, two rhesus monkey specific exons derived from the transposable elements of AluYRa2 (SINE family) and MER11B (LTR family) were also identified.</p> <p>Conclusion</p> <p>The 1835 rhesus monkey placenta full-length cDNA sequences described here could expand genomic resources and information of rhesus monkeys. This increased genomic information will greatly contribute to the development of evolutionary biology and biomedical research.</p

    An improved baculovirus insecticide producing occlusion bodies that contain Bacillus thuringiensis insect toxin

    Get PDF
    Baculovirus occlusion bodies, large proteinaceous structures which contain virions, have recently been engineered to incorporate foreign proteins. The major constituent protein of occlusion bodies from the baculovirus Autographa californica nucleopolyhedrovirus is polyhedrin, and assembly of recombinant occlusion bodies which incorporate a foreign protein depends on an interaction between native polyhedrin and a polyhedrin–foreign protein fusion. This technology has now been applied to the generation of a recombinant baculovirus (ColorBtrus) that produces occlusion bodies incorporating the Bacillus thuringiensis (Bt) insecticidal Cry1Ac toxin protein. ColorBtrus coexpresses native polyhedrin and a fusion protein in which polyhedrin is fused to the Bt toxin, which is in turn fused to green fluorescent protein (GFP). Analysis of ColorBtrus occlusion bodies confirmed that they include both Bt toxin and GFP, yet still incorporate virions. Bioassay of ColorBtrus demonstrated that its speed of action and pathogenicity are strikingly enhanced compared to wild-type virus. ColorBtrus represents a novel, powerful biological insecticide that combines positive attributes of both Bt toxin and baculovirus based systems

    An observational study of patient characteristics associated with the mode of admission to acute stroke services in North East, England

    Get PDF
    Objective Effective provision of urgent stroke care relies upon admission to hospital by emergency ambulance and may involve pre-hospital redirection. The proportion and characteristics of patients who do not arrive by emergency ambulance and their impact on service efficiency is unclear. To assist in the planning of regional stroke services we examined the volume, characteristics and prognosis of patients according to the mode of presentation to local services. Study design and setting A prospective regional database of consecutive acute stroke admissions was conducted in North East, England between 01/09/10-30/09/11. Case ascertainment and transport mode were checked against hospital coding and ambulance dispatch databases. Results Twelve acute stroke units contributed data for a mean of 10.7 months. 2792/3131 (89%) patients received a diagnosis of stroke within 24 hours of admission: 2002 arrivals by emergency ambulance; 538 by private transport or non-emergency ambulance; 252 unknown mode. Emergency ambulance patients were older (76 vs 69 years), more likely to be from institutional care (10% vs 1%) and experiencing total anterior circulation symptoms (27% vs 6%). Thrombolysis treatment was commoner following emergency admission (11% vs 4%). However patients attending without emergency ambulance had lower inpatient mortality (2% vs 18%), a lower rate of institutionalisation (1% vs 6%) and less need for daily carers (7% vs 16%). 149/155 (96%) of highly dependent patients were admitted by emergency ambulance, but none received thrombolysis. Conclusion Presentations of new stroke without emergency ambulance involvement were not unusual but were associated with a better outcome due to younger age, milder neurological impairment and lower levels of pre-stroke dependency. Most patients with a high level of pre-stroke dependency arrived by emergency ambulance but did not receive thrombolysis. It is important to be aware of easily identifiable demographic groups that differ in their potential to gain from different service configurations

    Functional role of aspartic proteinase cathepsin D in insect metamorphosis

    Get PDF
    BACKGROUND: Metamorphosis is a complex, highly conserved and strictly regulated development process that involves the programmed cell death of obsolete larval organs. Here we show a novel functional role for the aspartic proteinase cathepsin D during insect metamorphosis. RESULTS: Cathepsin D of the silkworm Bombyx mori (BmCatD) was ecdysone-induced, differentially and spatially expressed in the larval fat body of the final instar and in the larval gut of pupal stage, and its expression led to programmed cell death. Furthermore, BmCatD was highly induced in the fat body of baculovirus-infected B. mori larvae, suggesting that this gene is involved in the induction of metamorphosis of host insects infected with baculovirus. RNA interference (RNAi)-mediated BmCatD knock-down inhibited programmed cell death of the larval fat body, resulting in the arrest of larval-pupal transformation. BmCatD RNAi also inhibited the programmed cell death of larval gut during pupal stage. CONCLUSION: Based on these results, we concluded that BmCatD is critically involved in the programmed cell death of the larval fat body and larval gut in silkworm metamorphosis
    • …
    corecore