1,364 research outputs found

    Test-retest reliability of FreeSurfer automated hippocampal subfield segmentation within and across scanners

    Get PDF
    The human hippocampus is vulnerable to a range of degenerative conditions and as such, accurate in vivo measurement of the hippocampus and hippocampal substructures via neuroimaging is of great interest for understanding mechanisms of disease as well as for use as a biomarker in clinical trials of novel therapeutics. Although total hippocampal volume can be measured relatively reliably, it is critical to understand how this reliability is affected by acquisition on different scanners, as multiple scanning platforms would likely be utilized in large-scale clinical trials. This is particularly true for hippocampal subregional measurements, which have only relatively recently been measurable through common image processing platforms such as FreeSurfer. Accurate segmentation of these subregions is challenging due to their small size, magnetic resonance imaging (MRI) signal loss in medial temporal regions of the brain, and lack of contrast for delineation from standard neuroimaging procedures. Here, we assess the test-retest reliability of the FreeSurfer automated hippocampal subfield segmentation procedure using two Siemens model scanners (a Siemens Trio and Prismafit Trio upgrade). T1-weighted images were acquired for 11 generally healthy younger participants (two scans on the Trio and one scan on the Prismafit). Each scan was processed through the standard cross-sectional stream and the recently released longitudinal pipeline in FreeSurfer v6.0 for hippocampal segmentation. Test-retest reliability of the volumetric measures was examined for individual subfields as well as percent volume difference and Dice overlap among scans and intra-class correlation coefficients (ICC). Reliability was high in the molecular layer, dentate gyrus, and whole hippocampus with the inclusion of three time points with mean volume differences among scans less than 3%, overlap greater than 80%, and ICC >0.95. The parasubiculum and hippocampal fissure showed the least improvement in reliability with mean volume difference greater than 5%, overlap less than 70%, and ICC scores ranging from 0.78 to 0.89. Other subregions, including the CA regions, were stable in their mean volume difference and overlap (75% respectively) and showed improvement in reliability with the inclusion of three scans (ICC ​> ​0.9). Reliability was generally higher within scanner (Trio-Trio), however, Trio-Prismafit reliability was also high and did not exhibit an obvious bias. These results suggest that the FreeSurfer automated segmentation procedure is a reliable method to measure total as well as hippocampal subregional volumes and may be useful in clinical applications including as an endpoint for future clinical trials of conditions affecting the hippocampus

    Light Higgsino from Axion Dark Radiation

    Full text link
    The recent observations imply that there is an extra relativistic degree of freedom coined dark radiation. We argue that the QCD axion is a plausible candidate for the dark radiation, not only because of its extremely small mass, but also because in the supersymmetric extension of the Peccei-Quinn mechanism the saxion tends to dominate the Universe and decays into axions with a sizable branching fraction. We show that the Higgsino mixing parameter mu is bounded from above when the axions produced at the saxion decays constitute the dark radiation: mu \lesssim 300 GeV for a saxion lighter than 2m_W, and mu less than the saxion mass otherwise. Interestingly, the Higgsino can be light enough to be within the reach of LHC and/or ILC even when the other superparticles are heavy with mass about 1 TeV or higher. We also estimate the abundance of axino produced by the decays of Higgsino and saxion.Comment: 18 pages, 1 figure; published in JHE

    Interfering with inflammation: a new strategy to block breast cancer self-renewal and progression?

    Get PDF
    Two recent studies show that epigenetics and inflammation play a relevant role in the regulation of transformation and cancer cell self-renewal in breast tumours, opening up the possibility that cancer progression can be controlled by interfering with inflammation cascades. Struhl's group showed that transient activation of the Src oncoprotein induces transformation and self-renewal of immortal cells via an epigenetic switch involving NF-ÎşB, Lin28, Let-7 microRNA and IL-6. Concomitantly, Wicha's laboratory developed a strategy to selectively target cancer stem cells, retarding tumour growth and reducing metastasis by blocking the IL-8 receptor CXCR1 using either an inhibitor, repertaxin or a specific blocking antibody

    Utilization of lime for stabilizing soft clay soil of high organic content

    Get PDF
    This paper presents the results of geotechnical and mineralogical investigations on lime-treated soft clay soil from Idku City, Egypt, where high organic matters of about 14% exist. Lime was added in the order of 1, 3, 5 and 7% by weight and laboratory experiments after 7, 15, 30 and 60 days were conducted including the mineralogical and microstructural examinations, grain size analysis, plasticity limits, unconfined compressive tests, vane shear tests and oedometer tests. The results indicate that soft clay soil of high organic content of 14% can be stabilized satisfactorily with the addition of 7% lime. The results also demonstrate that the changes in the mineralogical contents and soil fabric of high organic lime-treated soft clay improve soil plasticity, strength and compressibility

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    Elastin is Localised to the Interfascicular Matrix of Energy Storing Tendons and Becomes Increasingly Disorganised With Ageing

    Get PDF
    Tendon is composed of fascicles bound together by the interfascicular matrix (IFM). Energy storing tendons are more elastic and extensible than positional tendons; behaviour provided by specialisation of the IFM to enable repeated interfascicular sliding and recoil. With ageing, the IFM becomes stiffer and less fatigue resistant, potentially explaining why older tendons become more injury-prone. Recent data indicates enrichment of elastin within the IFM, but this has yet to be quantified. We hypothesised that elastin is more prevalent in energy storing than positional tendons, and is mainly localised to the IFM. Further, we hypothesised that elastin becomes disorganised and fragmented, and decreases in amount with ageing, especially in energy storing tendons. Biochemical analyses and immunohistochemical techniques were used to determine elastin content and organisation, in young and old equine energy storing and positional tendons. Supporting the hypothesis, elastin localises to the IFM of energy storing tendons, reducing in quantity and becoming more disorganised with ageing. These changes may contribute to the increased injury risk in aged energy storing tendons. Full understanding of the processes leading to loss of elastin and its disorganisation with ageing may aid in the development of treatments to prevent age related tendinopathy

    Testing Yukawa-unified SUSY during year 1 of LHC: the role of multiple b-jets, dileptons and missing E_T

    Get PDF
    We examine the prospects for testing SO(10) Yukawa-unified supersymmetric models during the first year of LHC running at \sqrt{s}= 7 TeV, assuming integrated luminosity values of 0.1 to 1 fb^-1. We consider two cases: the Higgs splitting (HS) and the D-term splitting (DR3) models. Each generically predicts light gluinos and heavy squarks, with an inverted scalar mass hierarchy. We hence expect large rates for gluino pair production followed by decays to final states with large b-jet multiplicity. For 0.2 fb^-1 of integrated luminosity, we find a 5 sigma discovery reach of m(gluino) ~ 400 GeV even if missing transverse energy, E_T^miss, is not a viable cut variable, by examining the multi-b-jet final state. A corroborating signal should stand out in the opposite-sign (OS) dimuon channel in the case of the HS model; the DR3 model will require higher integrated luminosity to yield a signal in the OS dimuon channel. This region may also be probed by the Tevatron with 5-10 fb^-1 of data, if a corresponding search in the multi-b+ E_T^miss channel is performed. With higher integrated luminosities of ~1 fb^-1, using E_T^miss plus a large multiplicity of b-jets, LHC should be able to discover Yukawa-unified SUSY with m(gluino) up to about 630 GeV. Thus, the year 1 LHC reach for Yukawa-unified SUSY should be enough to either claim a discovery of the gluino, or to very nearly rule out this class of models, since higher values of m(gluino) lead to rather poor Yukawa unification.Comment: 32 pages including 31 EPS figure
    • …
    corecore