113 research outputs found

    The Saharan isolate Saccharothrix algeriensis NRRL B-24137 induces systemic resistance in Arabidopsis thaliana seedlings against Botrytis cinerea

    Get PDF
    Background and aim Saccharothrix algeriensis NRRL B-24137, isolated from a Saharan soil, has been described as a potential biocontrol agent against Botrytis cinerea and other phytopathogens. However, the plant protection mechanisms involved still need to be described. The aim of this study was to determine this protection phenomenon as well as parts of the mechanisms involved, using Arabidopsis thaliana seedlings and B. cinerea. Methods The bacterial colonization process was evaluated on A. thaliana seedlings using fluorescence in situ hybridization. Protection of A. thaliana seedlings inoculated with NRRL B-24137 against B. cinerea was then evaluated. Parts of the mechanisms involved in the systemic protection against B. cinerea were evaluated using known mutants of genes involved in jasmonate (JA)/ethylene (ET)/salicylic acid (SA) signaling. Other Arabidopsis mutants, AtrhbohD-3, AtrhbohF-3, and ups1-1 were also screened to determine other parts of the mechanisms involved. Results The results showed that the strain NRRL B-24137 colonized, epi- and endophytically, the roots of Arabidopsis seedlings but the strain was not a systemic colonizer during the time of the experiment. The strain NRRL B-24137 also reduced B. cinerea symptoms and the protection was linked to known mechanisms of induced systemic resistance (ISR; JA/ET signaling), as well as to functionality of AtrbohF oxidase and of UPS1. Crosstalk between ET/JA and SA signaling could also be involved. Conclusions The isolate NRRL B-24137, after colonizing the root systems of A. thaliana, induces an ISR against B. cinerea, which is JA/ET dependent, but could also require SA crosstalk and protection could also require NAPDH oxidases and UPS1 functionalities

    Intraspecific variation of metal preference patterns for hyperaccumulation in Thlaspi caerulescens: evidence from binary metal exposures.

    Get PDF
    Metal preferences with regard to accumulation were compared between populations of the heavy metal hyperaccumulator Thlaspi caerulescens, originating from calamine, serpentine and non-metalliferous soils. Plants were exposed for 3 weeks to factorial combinations of concentrations of different metals in binary mixture in hydroponics. The nature and degree of the interactions varied significantly between populations. In the calamine, non-Cd/Ni-hyperaccumulating population, La Calamine, there were no one-sided or mutual antagonistic interactions among the metals with regard to their accumulation in the plant. In three other populations capable of Cd and Ni hyperaccumulation, from calamine, serpentine and non-metalliferous soil respectively, there were one-sided or mutual antagonistic interactions between Cd and Zn, Cd and Ni, and Ni and Zn, possibly resulting from competition for transporters involved in uptake or plant-internal transport. Significant synergistic interactions, probably resulting from regulation of transporter expression, were also found, particularly in the La Calamine population. All the populations seemed to express a more or less Zn-specific high-affinity system. The serpentine and the non-metallicolous populations seemed to posses low-affinity systems with a preference for Cd and Zn over Ni, one of which may be responsible for the Ni hyperaccumulation of the serpentine population in its natural environment. The calamine population from Ganges also seemed to express a strongly Cd-specific high-affinity system which is in part responsible for the Cd-hyperaccumulation phenotype exhibited by this population in its natural environment. © 2007 The Author(s)

    The significance of genome-wide transcriptional regulation in the evolution of stress tolerance.

    Get PDF
    It is widely recognized that stress plays an important role in directing the adaptive adjustment of an organism to changing environments. However, very little is known about the evolution of mechanisms that promote stress-induced variation. Adaptive transcriptional responses have been implicated in the evolution of tolerance to natural and anthropogenic stressors in the environment. Recent technological advances in transcriptomics provide a mechanistic understanding of biological pathways or processes involved in stress-induced phenotypic change. Furthermore, these studies are (semi) quantitative and provide insight into the reaction norms of identified target genes in response to specific stressors. We argue that plasticity in gene expression reaction norms may be important in the evolution of stress tolerance and adaptation to environmental stress. This review highlights the consequences of transcriptional plasticity of stress responses within a single generation and concludes that gene promoters containing a TATA box are more capable of rapid and variable responses than TATA-less genes. In addition, the consequences of plastic transcriptional responses to stress over multiple generations are discussed. Based on examples from the literature, we show that constitutive over expression of specific stress response genes results in stress adapted phenotypes. However, organisms with an innate capacity to buffer stress display plastic transcriptional responses. Finally, we call for an improved integration of the concept of phenotypic plasticity with studies that focus on the regulation of transcription. © Springer Science+Business Media B.V. 2010

    Large expert-curated database for benchmarking document similarity detection in biomedical literature search

    Get PDF
    Document recommendation systems for locating relevant literature have mostly relied on methods developed a decade ago. This is largely due to the lack of a large offline gold-standard benchmark of relevant documents that cover a variety of research fields such that newly developed literature search techniques can be compared, improved and translated into practice. To overcome this bottleneck, we have established the RElevant LIterature SearcH consortium consisting of more than 1500 scientists from 84 countries, who have collectively annotated the relevance of over 180 000 PubMed-listed articles with regard to their respective seed (input) article/s. The majority of annotations were contributed by highly experienced, original authors of the seed articles. The collected data cover 76% of all unique PubMed Medical Subject Headings descriptors. No systematic biases were observed across different experience levels, research fields or time spent on annotations. More importantly, annotations of the same document pairs contributed by different scientists were highly concordant. We further show that the three representative baseline methods used to generate recommended articles for evaluation (Okapi Best Matching 25, Term Frequency–Inverse Document Frequency and PubMed Related Articles) had similar overall performances. Additionally, we found that these methods each tend to produce distinct collections of recommended articles, suggesting that a hybrid method may be required to completely capture all relevant articles. The established database server located at https://relishdb.ict.griffith.edu.au is freely available for the downloading of annotation data and the blind testing of new methods. We expect that this benchmark will be useful for stimulating the development of new powerful techniques for title and title/abstract-based search engines for relevant articles in biomedical research

    C. PRESL) at the transcriptional level.

    Get PDF
    This paper investigates differences in gene expression among the two Thlaspi caerulescens ecotypes La Calamine (LC) and Lellingen (LE) that have been shown to differ in metal tolerance and metal uptake. LC originates from a metalliferous soil and tolerates higher metal concentrations than LE which originates from a non-metalliferous soil. The two ecotypes were treated with different levels of zinc in solution culture, and differences in gene expression were assessed through application of a cDNA microarray consisting of 1,700 root and 2,700 shoot cDNAs. Hybridisation of root and shoot cDNA from the two ecotypes revealed a total of 257 differentially expressed genes. The regulation of selected genes was verified by quantitative reverse transcriptase polymerase chain reaction. Comparison of the expression profiles of the two ecotypes suggests that LC has a higher capacity to cope with reactive oxygen species and to avoid the formation of peroxynitrite. Furthermore, increased transcripts for the genes encoding for water channel proteins could explain the higher Zn tolerance of LC compared to LE. The higher Zn tolerance of LC was reflected by a lower expression of the genes involved in disease and defence mechanisms. The results of this study provide a valuable set of data that may help to improve our understanding of the mechanisms employed by plants to tolerate toxic concentrations of metal in the soil
    • …
    corecore