29 research outputs found

    Comparison of digital and conventional impression techniques: evaluation of patients’ perception, treatment comfort, effectiveness and clinical outcomes

    Get PDF
    Background: The purpose of this study was to compare two impression techniques from the perspective of patient preferences and treatment comfort.Methods: Twenty-four (12 male, 12 female) subjects who had no previous experience with either conventional or digital impression participated in this study. Conventional impressions of maxillary and mandibular dental arches were taken with a polyether impression material (Impregum, 3 M ESPE), and bite registrations were made with polysiloxane bite registration material (Futar D, Kettenbach). Two weeks later, digital impressions and bite scans were performed using an intra-oral scanner (CEREC Omnicam, Sirona). Immediately after the impressions were made, the subjects' attitudes, preferences and perceptions towards impression techniques were evaluated using a standardized questionnaire. The perceived source of stress was evaluated using the State-Trait Anxiety Scale. Processing steps of the impression techniques (tray selection, working time etc.) were recorded in seconds. Statistical analyses were performed with the Wilcoxon Rank test, and p < 0.05 was considered significant.Results: There were significant differences among the groups (p < 0.05) in terms of total working time and processing steps. Patients stated that digital impressions were more comfortable than conventional techniques.Conclusions: Digital impressions resulted in a more time-efficient technique than conventional impressions. Patients preferred the digital impression technique rather than conventional techniques

    Zwanzig-Mori projection operators and EEG dynamics: deriving a simple equation of motion

    Get PDF
    We present a macroscopic theory of electroencephalogram (EEG) dynamics based on the laws of motion that govern atomic and molecular motion. The theory is an application of Zwanzig-Mori projection operators. The result is a simple equation of motion that has the form of a generalized Langevin equation (GLE), which requires knowledge only of macroscopic properties. The macroscopic properties can be extracted from experimental data by one of two possible variational principles. These variational principles are our principal contribution to the formalism. Potential applications are discussed, including applications to the theory of critical phenomena in the brain, Granger causality and Kalman filters

    Electrical Brain Responses to an Auditory Illusion and the Impact of Musical Expertise

    Get PDF
    The presentation of two sinusoidal tones, one to each ear, with a slight frequency mismatch yields an auditory illusion of a beating frequency equal to the frequency difference between the two tones; this is known as binaural beat (BB). The effect of brief BB stimulation on scalp EEG is not conclusively demonstrated. Further, no studies have examined the impact of musical training associated with BB stimulation, yet musicians' brains are often associated with enhanced auditory processing. In this study, we analysed EEG brain responses from two groups, musicians and non-musicians, when stimulated by short presentation (1 min) of binaural beats with beat frequency varying from 1 Hz to 48 Hz. We focused our analysis on alpha and gamma band EEG signals, and they were analysed in terms of spectral power, and functional connectivity as measured by two phase synchrony based measures, phase locking value and phase lag index. Finally, these measures were used to characterize the degree of centrality, segregation and integration of the functional brain network. We found that beat frequencies belonging to alpha band produced the most significant steady-state responses across groups. Further, processing of low frequency (delta, theta, alpha) binaural beats had significant impact on cortical network patterns in the alpha band oscillations. Altogether these results provide a neurophysiological account of cortical responses to BB stimulation at varying frequencies, and demonstrate a modulation of cortico-cortical connectivity in musicians' brains, and further suggest a kind of neuronal entrainment of a linear and nonlinear relationship to the beating frequencies
    corecore