84 research outputs found

    Global analyses of TetR family transcriptional regulators in mycobacteria indicates conservation across species and diversity in regulated functions

    Get PDF
    BACKGROUND: Mycobacteria inhabit diverse niches and display high metabolic versatility. They can colonise both humans and animals and are also able to survive in the environment. In order to succeed, response to environmental cues via transcriptional regulation is required. In this study we focused on the TetR family of transcriptional regulators (TFTRs) in mycobacteria. RESULTS: We used InterPro to classify the entire complement of transcriptional regulators in 10 mycobacterial species and these analyses showed that TFTRs are the most abundant family of regulators in all species. We identified those TFTRs that are conserved across all species analysed and those that are unique to the pathogens included in the analysis. We examined genomic contexts of 663 of the conserved TFTRs and observed that the majority of TFTRs are separated by 200 bp or less from divergently oriented genes. Analyses of divergent genes indicated that the TFTRs control diverse biochemical functions not limited to efflux pumps. TFTRs typically bind to palindromic motifs and we identified 11 highly significant novel motifs in the upstream regions of divergently oriented TFTRs. The C-terminal ligand binding domain from the TFTR complement in M. tuberculosis showed great diversity in amino acid sequence but with an overall architecture common to other TFTRs. CONCLUSION: This study suggests that mycobacteria depend on TFTRs for the transcriptional control of a number of metabolic functions yet the physiological role of the majority of these regulators remain unknown. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12864-015-1696-9) contains supplementary material, which is available to authorized users

    Genetic Characterization of Conserved Charged Residues in the Bacterial Flagellar Type III Export Protein FlhA

    Get PDF
    For assembly of the bacterial flagellum, most of flagellar proteins are transported to the distal end of the flagellum by the flagellar type III protein export apparatus powered by proton motive force (PMF) across the cytoplasmic membrane. FlhA is an integral membrane protein of the export apparatus and is involved in an early stage of the export process along with three soluble proteins, FliH, FliI, and FliJ, but the energy coupling mechanism remains unknown. Here, we carried out site-directed mutagenesis of eight, highly conserved charged residues in putative juxta- and trans-membrane helices of FlhA. Only Asp-208 was an essential acidic residue. Most of the FlhA substitutions were tolerated, but resulted in loss-of-function in the ΔfliH-fliI mutant background, even with the second-site flhB(P28T) mutation that increases the probability of flagellar protein export in the absence of FliH and FliI. The addition of FliH and FliI allowed the D45A, R85A, R94K and R270A mutant proteins to work even in the presence of the flhB(P28T) mutation. Suppressor analysis of a flhA(K203W) mutation showed an interaction between FlhA and FliR. Taken all together, we suggest that Asp-208 is directly involved in PMF-driven protein export and that the cooperative interactions of FlhA with FlhB, FliH, FliI, and FliR drive the translocation of export substrate

    Simultaneous assessment of acidogenesis-mitigation and specific bacterial growth-inhibition by dentifrices

    Get PDF
    Dentifrices can augment oral hygiene by inactivating bacteria and at sub-lethal concentrations may affect bacterial metabolism, potentially inhibiting acidogenesis, the main cause of caries. Reported herein is the development of a rapid method to simultaneously measure group-specific bactericidal and acidogenesis-mitigation effects of dentifrices on oral bacteria. Saliva was incubated aerobically and anaerobically in Tryptone Soya Broth, Wilkins-Chalgren Broth with mucin, or artificial saliva and was exposed to dentifrices containing triclosan/copolymer (TD); sodium fluoride (FD); stannous fluoride and zinc lactate (SFD1); or stannous fluoride, zinc lactate and stannous chloride (SFD2). Minimum inhibitory concentrations (MIC) were determined turbidometrically whilst group-specific minimum bactericidal concentrations (MBC) were assessed using growth media and conditions selective for total aerobes, total anaerobes, streptococci and Gram-negative anaerobes. Minimum acid neutralization concentration (MNC) was defined as the lowest concentration of dentifrice at which acidification was inhibited. Differences between MIC and MNC were calculated and normalized with respect to MIC to derive the combined inhibitory and neutralizing capacity (CINC), a cumulative measure of acidogenesis-mitigation and growth inhibition. The overall rank order for growth inhibition potency (MIC) under aerobic and anaerobic conditions was: TD> SFD2> SFD1> FD. Acidogenesis-mitigation (MNC) was ordered; TD> FD> SFD2> SFD1. CINC was ordered TD> FD> SFD2> SFD1 aerobically and TD> FD> SFD1> SFD2 anaerobically. With respect to group-specific bactericidal activity, TD generally exhibited the greatest potency, particularly against total aerobes, total anaerobes and streptococci. This approach enables the rapid simultaneous evaluation of acidity mitigation, growth inhibition and specific antimicrobial activity by dentifrices

    Timing is everything: the regulation of type III secretion

    Get PDF
    Type Three Secretion Systems (T3SSs) are essential virulence determinants of many Gram-negative bacteria. The T3SS is an injection device that can transfer bacterial virulence proteins directly into host cells. The apparatus is made up of a basal body that spans both bacterial membranes and an extracellular needle that possesses a channel that is thought to act as a conduit for protein secretion. Contact with a host-cell membrane triggers the insertion of a pore into the target membrane, and effectors are translocated through this pore into the host cell. To assemble a functional T3SS, specific substrates must be targeted to the apparatus in the correct order. Recently, there have been many developments in our structural and functional understanding of the proteins involved in the regulation of secretion. Here we review the current understanding of protein components of the system thought to be involved in switching between different stages of secretion

    The Co-Morbidity Burden of Children and Young Adults with Autism Spectrum Disorders

    Get PDF
    Objectives: Use electronic health records Autism Spectrum Disorder (ASD) to assess the comorbidity burden of ASD in children and young adults. Study Design: A retrospective prevalence study was performed using a distributed query system across three general hospitals and one pediatric hospital. Over 14,000 individuals under age 35 with ASD were characterized by their co-morbidities and conversely, the prevalence of ASD within these comorbidities was measured. The comorbidity prevalence of the younger (Age<18 years) and older (Age 18–34 years) individuals with ASD was compared. Results: 19.44% of ASD patients had epilepsy as compared to 2.19% in the overall hospital population (95% confidence interval for difference in percentages 13.58–14.69%), 2.43% of ASD with schizophrenia vs. 0.24% in the hospital population (95% CI 1.89–2.39%), inflammatory bowel disease (IBD) 0.83% vs. 0.54% (95% CI 0.13–0.43%), bowel disorders (without IBD) 11.74% vs. 4.5% (95% CI 5.72–6.68%), CNS/cranial anomalies 12.45% vs. 1.19% (95% CI 9.41–10.38%), diabetes mellitus type I (DM1) 0.79% vs. 0.34% (95% CI 0.3–0.6%), muscular dystrophy 0.47% vs 0.05% (95% CI 0.26–0.49%), sleep disorders 1.12% vs. 0.14% (95% CI 0.79–1.14%). Autoimmune disorders (excluding DM1 and IBD) were not significantly different at 0.67% vs. 0.68% (95% CI −0.14-0.13%). Three of the studied comorbidities increased significantly when comparing ages 0–17 vs 18–34 with p<0.001: Schizophrenia (1.43% vs. 8.76%), diabetes mellitus type I (0.67% vs. 2.08%), IBD (0.68% vs. 1.99%) whereas sleeping disorders, bowel disorders (without IBD) and epilepsy did not change significantly. Conclusions: The comorbidities of ASD encompass disease states that are significantly overrepresented in ASD with respect to even the patient populations of tertiary health centers. This burden of comorbidities goes well beyond those routinely managed in developmental medicine centers and requires broad multidisciplinary management that payors and providers will have to plan for

    A Folding Pathway-Dependent Score to Recognize Membrane Proteins

    Get PDF
    While various approaches exist to study protein localization, it is still a challenge to predict where proteins localize. Here, we consider a mechanistic viewpoint for membrane localization. Taking into account the steps for the folding pathway of α-helical membrane proteins and relating biophysical parameters to each of these steps, we create a score capable of predicting the propensity for membrane localization and call it FP3mem. This score is driven from the principal component analysis (PCA) of the biophysical parameters related to membrane localization. FP3mem allows us to rationalize the colocalization of a number of channel proteins with the Cav1.2 channel by their fewer propensities for membrane localization

    Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs

    Full text link

    Carotenoids: GGPP-Derived Polyisoprenoid (C40) Coloring Pigments

    No full text
    corecore