148 research outputs found

    Use of medications by people with chronic fatigue syndrome and healthy persons: a population-based study of fatiguing illness in Georgia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic fatigue syndrome (CFS) is a debilitating condition of unknown etiology and no definitive pharmacotherapy. Patients are usually prescribed symptomatic treatment or self-medicate. We evaluated prescription and non-prescription drug use among persons with CFS in Georgia and compared it to that in non-fatigued <it>Well </it>controls and also to chronically <it>Unwell </it>individuals not fully meeting criteria for CFS.</p> <p>Methods</p> <p>A population-based, case-control study. To identify persons with possible CFS-like illness and controls, we conducted a random-digit dialing telephone screening of 19,807 Georgia residents, followed by a detailed telephone interview of 5,630 to identify subjects with CFS-like illness, other chronically <it>Unwell</it>, and <it>Well </it>subjects. All those with CFS-like illness (n = 469), a random sample of chronically <it>Unwell </it>subjects (n = 505), and <it>Well </it>individuals (n = 641) who were age-, sex-, race-, and geographically matched to those with CFS-like illness were invited for a clinical evaluation and 783 participated (48% overall response rate). Clinical evaluation identified 113 persons with CFS, 264 <it>Unwell </it>subjects with insufficient symptoms for CFS (named ISF), and 124 <it>Well </it>controls; the remaining 280 subjects had exclusionary medical or psychiatric conditions, and 2 subjects could not be classified. Subjects were asked to bring all medications taken in the past 2 weeks to the clinic where a research nurse viewed and recorded the name and the dose of each medication.</p> <p>Results</p> <p>More than 90% of persons with CFS used at least one drug or supplement within the preceding two weeks. Among users, people with CFS used an average of 5.8 drugs or supplements, compared to 4.1 by ISF and 3.7 by <it>Well </it>controls. Persons with CFS were significantly more likely to use antidepressants, sedatives, muscle relaxants, and anti-acids than either <it>Well </it>controls or the ISF group. In addition, persons with CFS were significantly more likely to use pain-relievers, anti-histamines and cold/sinus medications than were <it>Well </it>controls.</p> <p>Conclusion</p> <p>Medical care providers of patients with chronic fatigue syndrome should be aware of polypharmacy as a problem in such patients, and the related potential iatrogenic effects and drug interactions.</p

    Fusion and Fission of Genes Define a Metric between Fungal Genomes

    Get PDF
    Gene fusion and fission events are key mechanisms in the evolution of gene architecture, whose effects are visible in protein architecture when they occur in coding sequences. Until now, the detection of fusion and fission events has been performed at the level of protein sequences with a post facto removal of supernumerary links due to paralogy, and often did not include looking for events defined only in single genomes. We propose a method for the detection of these events, defined on groups of paralogs to compensate for the gene redundancy of eukaryotic genomes, and apply it to the proteomes of 12 fungal species. We collected an inventory of 1,680 elementary fusion and fission events. In half the cases, both composite and element genes are found in the same species. Per-species counts of events correlate with the species genome size, suggesting a random mechanism of occurrence. Some biological functions of the genes involved in fusion and fission events are slightly over- or under-represented. As already noted in previous studies, the genes involved in an event tend to belong to the same functional category. We inferred the position of each event in the evolution tree of the 12 fungal species. The event localization counts for all the segments of the tree provide a metric that depicts the “recombinational” phylogeny among fungi. A possible interpretation of this metric as distance in adaptation space is proposed

    Predicting and Validating Protein Interactions Using Network Structure

    Get PDF
    Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions

    Associations between HIV and Human Pathways Revealed by Protein-Protein Interactions and Correlated Gene Expression Profiles

    Get PDF
    BACKGROUND: AIDS is one of the most devastating diseases in human history. Decades of studies have revealed host factors required for HIV infection, indicating that HIV exploits host processes for its own purposes. HIV infection leads to AIDS as well as various comorbidities. The associations between HIV and human pathways and diseases may reveal non-obvious relationships between HIV and non-HIV-defining diseases. PRINCIPAL FINDINGS: Human biological pathways were evaluated and statistically compared against the presence of HIV host factor related genes. All of the obtained scores comparing HIV targeted genes and biological pathways were ranked. Different rank results based on overlapping genes, recovered virus-host interactions, co-expressed genes, and common interactions in human protein-protein interaction networks were obtained. Correlations between rankings suggested that these measures yielded diverse rankings. Rank combination of these ranks led to a final ranking of HIV-associated pathways, which revealed that HIV is associated with immune cell-related pathways and several cancer-related pathways. The proposed method is also applicable to the evaluation of associations between other pathogens and human pathways and diseases. CONCLUSIONS: Our results suggest that HIV infection shares common molecular mechanisms with certain signaling pathways and cancers. Interference in apoptosis pathways and the long-term suppression of immune system functions by HIV infection might contribute to tumorigenesis. Relationships between HIV infection and human pathways of disease may aid in the identification of common drug targets for viral infections and other diseases

    Cognitive Neuropsychology of HIV-Associated Neurocognitive Disorders

    Get PDF
    Advances in the treatment of the human immunodeficiency virus (HIV) have dramatically improved survival rates over the past 10 years, but HIV-associated neurocognitive disorders (HAND) remain highly prevalent and continue to represent a significant public health problem. This review provides an update on the nature, extent, and diagnosis of HAND. Particular emphasis is placed on critically evaluating research within the realm of cognitive neuropsychology that aims to elucidate the component processes of HAND across the domains of executive functions, motor skills, speeded information processing, episodic memory, attention/working memory, language, and visuoperception. In addition to clarifying the cognitive mechanisms of HAND (e.g., impaired cognitive control), the cognitive neuropsychology approach may enhance the ecological validity of neuroAIDS research and inform the development of much needed novel, targeted cognitive and behavioral therapies

    Opposing effects of cancer-type-specific SPOP mutants on BET protein degradation and sensitivity to BET inhibitors.

    Get PDF
    It is generally assumed that recurrent mutations within a given cancer driver gene elicit similar drug responses. Cancer genome studies have identified recurrent but divergent missense mutations affecting the substrate-recognition domain of the ubiquitin ligase adaptor SPOP in endometrial and prostate cancers. The therapeutic implications of these mutations remain incompletely understood. Here we analyzed changes in the ubiquitin landscape induced by endometrial cancer-associated SPOP mutations and identified BRD2, BRD3 and BRD4 proteins (BETs) as SPOP-CUL3 substrates that are preferentially degraded by endometrial cancer-associated SPOP mutants. The resulting reduction of BET protein levels sensitized cancer cells to BET inhibitors. Conversely, prostate cancer-specific SPOP mutations resulted in impaired degradation of BETs, promoting their resistance to pharmacologic inhibition. These results uncover an oncogenomics paradox, whereby mutations mapping to the same domain evoke opposing drug susceptibilities. Specifically, we provide a molecular rationale for the use of BET inhibitors to treat patients with endometrial but not prostate cancer who harbor SPOP mutations

    Crystal Structure of an Integron Gene Cassette-Associated Protein from Vibrio cholerae Identifies a Cationic Drug-Binding Module

    Get PDF
    Background The direct isolation of integron gene cassettes from cultivated and environmental microbial sources allows an assessment of the impact of the integron/gene cassette system on the emergence of new phenotypes, such as drug resistance or virulence. A structural approach is being exploited to investigate the modularity and function of novel integron gene cassettes. Methodology/Principal Findings We report the 1.8 A crystal structure of Cass2, an integron-associated protein derived from an environmental V. cholerae. The structure defines a monomeric beta-barrel protein with a fold related to the effector-binding portion of AraC/XylS transcription activators. The closest homologs of Cass2 are multi-drug binding proteins, such as BmrR. Consistent with this, a binding pocket made up of hydrophobic residues and a single glutamate side chain is evident in Cass2, occupied in the crystal form by polyethylene glycol. Fluorescence assays demonstrate that Cass2 is capable of binding cationic drug compounds with submicromolar affinity. The Cass2 module possesses a protein interaction surface proximal to its drug-binding cavity with features homologous to those seen in multi-domain transcriptional regulators. Conclusions/Significance Genetic analysis identifies Cass2 to be representative of a larger family of independent effector-binding proteins associated with lateral gene transfer within Vibrio and closely-related species. We propose that the Cass2 family not only has capacity to form functional transcription regulator complexes, but represents possible evolutionary precursors to multi-domain regulators associated with cationic drug compounds.National Health and Medical Research Council (Australia) (NHMRC grant 488502)National Institutes of Health (U.S.) (Grant GM62414-0 )Ontario. Ministry of Revenue (Challenge Fund

    Key signalling nodes in mammary gland development and cancer. Mitogen-activated protein kinase signalling in experimental models of breast cancer progression and in mammary gland development

    Get PDF
    Seven classes of mitogen-activated protein kinase (MAPK) intracellular signalling cascades exist, four of which are implicated in breast disease and function in mammary epithelial cells. These are the extracellular regulated kinase (ERK)1/2 pathway, the ERK5 pathway, the p38 pathway and the c-Jun N-terminal kinase (JNK) pathway. In some forms of human breast cancer and in many experimental models of breast cancer progression, signalling through the ERK1/2 pathway, in particular, has been implicated as being important. We review the influence of ERK1/2 activity on the organised three-dimensional association of mammary epithelial cells, and in models of breast cancer cell invasion. We assess the importance of epidermal growth factor receptor family signalling through ERK1/2 in models of breast cancer progression and the influence of ERK1/2 on its substrate, the oestrogen receptor, in this context. In parallel, we consider the importance of these MAPK-centred signalling cascades during the cycle of mammary gland development. Although less extensively studied, we highlight the instances of signalling through the p38, JNK and ERK5 pathways involved in breast cancer progression and mammary gland development
    corecore