149 research outputs found

    Environmental Control of Phase Transition and Polyp Survival of a Massive-Outbreaker Jellyfish

    Get PDF
    A number of causes have been proposed to account for the occurrence of gelatinous zooplankton (both jellyfish and ctenophore) blooms. Jellyfish species have a complex life history involving a benthic asexual phase (polyp) and a pelagic sexual phase (medusa). Strong environmental control of jellyfish life cycles is suspected, but not fully understood. This study presents a comprehensive analysis on the physicochemical conditions that control the survival and phase transition of Cotylorhiza tuberculata; a scyphozoan that generates large outbreaks in the Mediterranean Sea. Laboratory experiments indicated that the influence of temperature on strobilation and polyp survival was the critical factor controlling the capacity of this species to proliferate. Early life stages were less sensitive to other factors such as salinity variations or the competitive advantage provided by zooxanthellae in a context of coastal eutrophication. Coherently with laboratory results, the presence/absence of outbreaks of this jellyfish in a particular year seems to be driven by temperature. This is the first time the environmental forcing of the mechanism driving the life cycle of a jellyfish has been disentangled via laboratory experimentation. Projecting this understanding to a field population under climatological variability results in a pattern coherent with in situ records

    A new device to seal large coronary aneurysms: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Coronary artery aneurysm is an uncommon disease. It is defined as a coronary artery dilatation, exceeding the diameter of the normal adjacent segment or the diameter of the patient's largest coronary vessel by 1.5 to 2 times. Coronary artery aneurysms are typically diagnosed by coronary angiography. The prognosis of coronary artery aneurysm is not well known and the management is challenging.</p> <p>Case presentation</p> <p>A 68-year-old Italian-Caucasian man presented to our hospital with angina. Coronary angiography revealed a large coronary aneurysm of the right coronary artery, which was successfully treated by the percutaneous implantation of an MGuard™stent.</p> <p>Conclusion</p> <p>This case report provides evidence that coronary artery aneurysms, even if very large, can be safely treated by MGuard™stent implantation. We strongly emphasize the high flexibility and good deliverability of this device, which leads to the complete exclusion of the aneurysm mediated by the process of endothelization of its thin mesh sleeves.</p

    Transcriptome Kinetics Is Governed by a Genome-Wide Coupling of mRNA Production and Degradation: A Role for RNA Pol II

    Get PDF
    Transcriptome dynamics is governed by two opposing processes, mRNA production and degradation. Recent studies found that changes in these processes are frequently coordinated and that the relationship between them shapes transcriptome kinetics. Specifically, when transcription changes are counter-acted with changes in mRNA stability, transient fast-relaxing transcriptome kinetics is observed. A possible molecular mechanism underlying such coordinated regulation might lay in two RNA polymerase (Pol II) subunits, Rpb4 and Rpb7, which are recruited to mRNAs during transcription and later affect their degradation in the cytoplasm. Here we used a yeast strain carrying a mutant Pol II which poorly recruits these subunits. We show that this mutant strain is impaired in its ability to modulate mRNA stability in response to stress. The normal negative coordinated regulation is lost in the mutant, resulting in abnormal transcriptome profiles both with respect to magnitude and kinetics of responses. These results reveal an important role for Pol II, in regulation of both mRNA synthesis and degradation, and also in coordinating between them. We propose a simple model for production-degradation coupling that accounts for our observations. The model shows how a simple manipulation of the rates of co-transcriptional mRNA imprinting by Pol II may govern genome-wide transcriptome kinetics in response to environmental changes

    Attenuation by all-trans-retinoic acid of sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine in Wistar rats

    Get PDF
    The effect of prolonged administration of all-trans-retinoic acid (RA) on sodium chloride-enhanced gastric carcinogenesis induced by N-methyl-N′-nitro-N-nitrosoguanidine, and the labelling and apoptotic indices and immunoreactivity of transforming growth factor (TGF) α in the gastric cancers was investigated in Wistar rats. After 25 weeks of carcinogen treatment, the rats were given chow pellets containing 10% sodium chloride and subcutaneous injections of RA at doses of 0.75 or 1.5 mg kg−1 body weight every other day. In week 52, oral supplementation with sodium chloride significantly increased the incidence of gastric cancers compared with the untreated controls. Long-term administration of RA at both doses significantly reduced the incidence of gastric cancers, which was enhanced by oral administration of sodium chloride. RA at both doses significantly decreased the labelling index and TGF-α immunoreactivity of gastric cancers, which were enhanced by administration of sodium chloride, and significantly increased the apoptotic index of cancers, which was lowered by administration of sodium chloride. These findings suggest that RA attenuates gastric carcinogenesis, enhanced by sodium chloride, by increasing apoptosis, decreasing DNA synthesis, and reducing TGF-α expression in gastric cancers. © 1999 Cancer Research Campaig

    Polycomb-mediated silencing in neuroendocrine prostate cancer

    Get PDF
    BACKGROUND: Neuroendocrine prostate cancer (NEPC) is a highly aggressive subtype of prostate cancer (PCa) for which the median survival remains less than a year. Current treatments are only palliative in nature, and the lack of suitable pre-clinical models has hampered previous efforts to develop novel therapeutic strategies. Addressing this need, we have recently established the first in vivo model of complete neuroendocrine transdifferentiation using patient-derived xenografts. Few genetic differences were observed between parental PCa and relapsed NEPC, suggesting that NEPC likely results from alterations that are epigenetic in nature. Thus, we sought to identify targetable epigenetic regulators whose expression was elevated in NEPC using genome-wide profiling of patient-derived xenografts and clinical samples. RESULTS: Our data indicate that multiple members of the polycomb group (PcG) family of transcriptional repressors were selectively upregulated in NEPC. Notably, CBX2 and EZH2 were consistently the most highly overexpressed epigenetic regulators across multiple datasets from clinical and xenograft tumor tissues. Given the striking upregulation of PcG genes and other transcriptional repressors, we derived a 185-gene list termed 'neuroendocrine-associated repression signature' (NEARS) by overlapping transcripts downregulated across multiple in vivo NEPC models. In line with the striking upregulation of PcG family members, NEARS was preferentially enriched with PcG target genes, suggesting a driving role for PcG silencing in NEPC. Importantly, NEARS was significantly associated with high-grade tumors, metastatic progression, and poor outcome in multiple clinical datasets, consistent with extensive literature linking PcG genes and aggressive disease progression. CONCLUSIONS: We have explored the epigenetic landscape of NEPC and provided evidence of increased PcG-mediated silencing associated with aberrant transcriptional regulation of key differentiation genes. Our results position CBX2 and EZH2 as potential therapeutic targets in NEPC, providing opportunities to explore novel strategies aimed at reversing epigenetic alterations driving this lethal disease

    Direct Interaction of Endogenous Kv Channels with Syntaxin Enhances Exocytosis by Neuroendocrine Cells

    Get PDF
    K+ efflux through voltage-gated K+ (Kv) channels can attenuate the release of neurotransmitters, neuropeptides and hormones by hyperpolarizing the membrane potential and attenuating Ca2+ influx. Notably, direct interaction between Kv2.1 channels overexpressed in PC12 cells and syntaxin has recently been shown to facilitate dense core vesicle (DCV)-mediated release. Here, we focus on endogenous Kv2.1 channels and show that disruption of their interaction with native syntaxin after ATP-dependent priming of the vesicles by Kv2.1 syntaxin–binding peptides inhibits Ca2+ -triggered exocytosis of DCVs from cracked PC12 cells in a specific and dose-dependent manner. The inhibition cannot simply be explained by the impairment of the interaction of syntaxin with its SNARE cognates. Thus, direct association between endogenous Kv2.1 and syntaxin enhances exocytosis and in combination with the Kv2.1 inhibitory effect to hyperpolarize the membrane potential, could contribute to the known activity dependence of DCV release in neuroendocrine cells and in dendrites where Kv2.1 commonly expresses and influences release

    Expression of nuclear retinoid receptors in normal, premalignant and malignant gastric tissues determined by in situ hybridization

    Get PDF
    [[abstract]]Retinoids exhibit multiple functions through interaction with nuclear retinoid receptors and have growth-suppressive activity on gastric cancer cells. To better understand the roles of nuclear retinoid receptors during gastric carcinogenesis, we have used in situ hybridization to investigate expression of retinoic acid receptors (RARs) and retinoid x receptors (RXRs) in premalignant and malignant formalin-fixed paraffin-embedded gastric tissues. Histological sections of eight normal, 17 distal normal and nine gastric cancer tissues were hybridized with non-radioactive RNA probes for subtypes of RAR and RXR. Expression of RARα, RARβ, RARγ, RXRα and RXRβ was found in most cell types in gastric mucosa tissues from normal individuals as well as in distal normal tissues from cancer patients. Expression of RARα and RARβ were found in three and seven cancer tissues, respectively, and levels of RXRα mRNA were significantly decreased in poorly differentiated cancer tissues. Among the five investigated nuclear retinoid receptors, only expression of RARα mRNA was significantly decreased in intestinal metaplasia, dysplasia and cancer tissues when compared to adjacent normal tissues. In conclusion, normal gastric mucosa expressed both RARs and RXRs, which supports the physiological role of retinoic acid on normal gastric mucosa. The decrease in RARα expression in premalignant and malignant gastric tissues suggests a significant role of RARα during gastric carcinogenesis.[[notice]]補正完畢[[incitationindex]]SC
    corecore