28 research outputs found

    A Late Form of Nucleophagy in Saccharomyces cerevisiae

    Get PDF
    Autophagy encompasses several processes by which cytosol and organelles can be delivered to the vacuole/lysosome for breakdown and recycling. We sought to investigate autophagy of the nucleus (nucleophagy) in the yeast Saccharomyces cerevisiae by employing genetically encoded fluorescent reporters. The use of such a nuclear reporter, n-Rosella, proved the basis of robust assays based on either following its accumulation (by confocal microscopy), or degradation (by immunoblotting), within the vacuole. We observed the delivery of n-Rosella to the vacuole only after prolonged periods of nitrogen starvation. Dual labeling of cells with Nvj1p-EYFP, a nuclear membrane reporter of piecemeal micronucleophagy of the nucleus (PMN), and the nucleoplasm-targeted NAB35-DsRed.T3 allowed us to detect PMN soon after the commencement of nitrogen starvation whilst delivery to the vacuole of the nucleoplasm reporter was observed only after prolonged periods of nitrogen starvation. This later delivery of nuclear components to the vacuole has been designated LN (late nucleophagy). Only a very few cells showed simultaneous accumulation of both reporters (Nvj1p-EYFP and NAB35-DsRed.T3) in the vacuole. We determined, therefore, that delivery of the two respective nuclear reporters to the vacuole is temporally and spatially separated. Furthermore, our data suggest that LN is mechanistically distinct from PMN because it can occur in nvj1Δ and vac8Δ cells, and does not require ATG11. Nevertheless, a subset of the components of the core macroautophagic machinery is required for LN as it is efficiently inhibited in null mutants of several autophagy-related genes (ATG) specifying such components. Moreover, the inhibition of LN in some mutants is accompanied by alterations in nuclear morphology

    Current opinions on autophagy in pathogenicity of fungi

    No full text

    Rational diagnostic strategy for Zellweger syndrome spectrum patients

    No full text
    Zellweger syndrome spectrum (ZSS) comprises a clinically and genetically heterogeneous disease entity, which is caused by mutations in any of the 12 different human PEX genes leading to impaired biogenesis of the peroxisome. Patients potentially suffering from ZSS are diagnosed biochemically by measuring elevated levels of very long chain fatty acids, pristanic acid and phytanic acid in plasma and serum and reduced levels of ether phospholipids in erythrocytes. Published reports on diagnostic procedures for ZSS patients are restricted either to biochemical markers or to defined mutations in a subset of PEX genes. Clarification of the primary genetic defect in an affected patient is crucial for genetic counselling, carrier testing or prenatal diagnosis. In this study, we present a rational diagnostic strategy for patients suspected of ZSS. By combining cell biology and molecular genetic methods in an appropriate sequence, we were able to detect the underlying mutation in various PEX genes within adequate time and cost. We applied this method on 90 patients who presented at our institute, Department of Pediatrics and Pediatric Neurology at Georg August University, and detected 174 mutant alleles within six different PEX genes, including two novel deletions and three new missense mutations in PEX6. Furthermore, this strategy will extend our knowledge on genotype–phenotype correlation in various PEX genes. It will contribute to a better understanding of ZSS pathogenesis, allowing the investigation of the effects of diverse mutations on the interaction between PEX proteins and peroxisomal function in vivo
    corecore