23 research outputs found

    What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs

    Get PDF
    Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000-150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo. Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer

    The majority of A-to-I RNA editing is not required for mammalian homeostasis

    Get PDF
    BACKGROUND: Adenosine-to-inosine (A-to-I) RNA editing, mediated by ADAR1 and ADAR2, occurs at tens of thousands to millions of sites across mammalian transcriptomes. A-to-I editing can change the protein coding potential of a transcript and alter RNA splicing, miRNA biology, RNA secondary structure and formation of other RNA species. In vivo, the editing-dependent protein recoding of GRIA2 is the essential function of ADAR2, while ADAR1 editing prevents innate immune sensing of endogenous RNAs by MDA5 in both human and mouse. However, a significant proportion of A-to-I editing sites can be edited by both ADAR1 and ADAR2, particularly within the brain where both are highly expressed. The physiological function(s) of these shared sites, including those evolutionarily conserved, is largely unknown. RESULTS: To generate completely A-to-I editing-deficient mammals, we crossed the viable rescued ADAR1-editing-deficient animals (Adar1E861A/E861AIfih1-/-) with rescued ADAR2-deficient (Adarb1-/-Gria2R/R) animals. Unexpectedly, the global absence of editing was well tolerated. Adar1E861A/E861AIfih1-/-Adarb1-/-Gria2R/R were recovered at Mendelian ratios and age normally. Detailed transcriptome analysis demonstrated that editing was absent in the brains of the compound mutants and that ADAR1 and ADAR2 have similar editing site preferences and patterns. CONCLUSIONS: We conclude that ADAR1 and ADAR2 are non-redundant and do not compensate for each other's essential functions in vivo. Physiologically essential A-to-I editing comprises a small subset of the editome, and the majority of editing is dispensable for mammalian homeostasis. Moreover, in vivo biologically essential protein recoding mediated by A-to-I editing is an exception in mammals

    Protein recoding by ADAR1-mediated RNA editing is not essential for normal development and homeostasis

    Get PDF
    BACKGROUND: Adenosine-to-inosine (A-to-I) editing of dsRNA by ADAR proteins is a pervasive epitranscriptome feature. Tens of thousands of A-to-I editing events are defined in the mouse, yet the functional impact of most is unknown. Editing causing protein recoding is the essential function of ADAR2, but an essential role for recoding by ADAR1 has not been demonstrated. ADAR1 has been proposed to have editing-dependent and editing-independent functions. The relative contribution of these in vivo has not been clearly defined. A critical function of ADAR1 is editing of endogenous RNA to prevent activation of the dsRNA sensor MDA5 (Ifih1). Outside of this, how ADAR1 editing contributes to normal development and homeostasis is uncertain. RESULTS: We describe the consequences of ADAR1 editing deficiency on murine homeostasis. Adar1 E861A/E861A Ifih1 -/- mice are strikingly normal, including their lifespan. There is a mild, non-pathogenic innate immune activation signature in the Adar1 E861A/E861A Ifih1 -/- mice. Assessing A-to-I editing across adult tissues demonstrates that outside of the brain, ADAR1 performs the majority of editing and that ADAR2 cannot compensate in its absence. Direct comparison of the Adar1 -/- and Adar1 E861A/E861A alleles demonstrates a high degree of concordance on both Ifih1 +/+ and Ifih1 -/- backgrounds, suggesting no substantial contribution from ADAR1 editing-independent functions. CONCLUSIONS: These analyses demonstrate that the lifetime absence of ADAR1-editing is well tolerated in the absence of MDA5. We conclude that protein recoding arising from ADAR1-mediated editing is not essential for organismal homeostasis. Additionally, the phenotypes associated with loss of ADAR1 are the result of RNA editing and MDA5-dependent functions

    hiCLIP reveals the in vivo atlas of mRNA secondary structures recognized by Staufen 1

    No full text
    mRNA structure is important for post-transcriptional regulation, largely because it affects binding of trans-acting factors(1). However, little is known about the in vivo structure of full-length mRNAs. Here we present hiCLIP, a high-throughput technique to identify RNA secondary structures interacting with RNA-binding proteins (RBPs) in vivo. Using this technique to investigate RNA structures bound by Staufen 1 (STAU1), we uncover a dominance of intra-molecular RNA duplexes, a depletion of duplexes from coding regions of highly translated mRNAs, an unforeseen prevalence of long-range duplexes in 3′ untranslated regions (UTRs), and a decreased incidence of SNPs in duplex-forming regions. We also discover a duplex spanning 858nts in the 3′ UTR of the X-box binding Protein 1 (XBP1) mRNA that regulates its cytoplasmic splicing and stability. Our study reveals the fundamental role of mRNA secondary structures in gene regulation and introduces hiCLIP as a widely applicable method for discovering novel, especially long-range, RNA duplexes
    corecore