31 research outputs found
Recommended from our members
Development of Front Surface, Spectral Control Filters with Greater Temperature Stability for Thermophotovoltaic Energy Conversion
Spectral control is an important consideration in achieving high conversion efficiency with thermophotovoltaic (TPV) energy conversion systems. TPV modules using front surface filters as the primary spectral control device have demonstrated conversion efficiencies in excess of 20% with power densities in excess of 0.4 W/cm{sup 2}. The front surface filter we are developing is a short pass, long wavelength reflection filter consisting of an interference filter deposited on a plasma filter. The materials used in the interference filter must exhibit high broad band transmission and good film quality and sufficient temperature stability at the operating temperature of the TPV cells and over any potential temperature excursions that may occur. Three high refractive index materials that offer good potential for use in TPV spectral control filters are antimony selenide (Sb{sub 2}Se{sub 3}), antimony sulfide (Sb{sub 2}S{sub 3}), and gallium telluride (GaTe). The highest spectral efficiency has been demonstrated using Sb{sub 2}Se{sub 3}; however this material develops significant near infrared (NIR, 0.72-2.5 {micro}m) absorption at temperatures in excess of 90 C. The other two materials are being developed as high temperature alternatives to Sb{sub 2}Se{sub 3}. TPV filters using GaTe and Sb{sub 2}S{sub 3} have been designed and fabricated, and initial results indicate that GaTe based filters are capable of operation at temperatures of 150 C or greater. Measured performance of TPV filters containing Sb{sub 2}Se{sub 3}, GaTe and Sb{sub 2}S{sub 3} are presented, along with the impact that these have on TPV module performance
MTF-1-Mediated Repression of the Zinc Transporter Zip10 Is Alleviated by Zinc Restriction
The regulation of cellular zinc uptake is a key process in the overall mechanism governing mammalian zinc homeostasis and how zinc participates in cellular functions. We analyzed the zinc transporters of the Zip family in both the brain and liver of zinc-deficient animals and found a large, significant increase in Zip10 expression. Additionally, Zip10 expression decreased in response to zinc repletion. Moreover, isolated mouse hepatocytes, AML12 hepatocytes, and Neuro 2A cells also respond differentially to zinc availability in vitro. Measurement of Zip10 hnRNA and actinomycin D inhibition studies indicate that Zip10 was transcriptionally regulated by zinc deficiency. Through luciferase promoter constructs and ChIP analysis, binding of MTF-1 to a metal response element located 17 bp downstream of the transcription start site was shown to be necessary for zinc-induced repression of Zip10. Furthermore, zinc-activated MTF-1 causes down-regulation of Zip10 transcription by physically blocking Pol II movement through the gene. Lastly, ZIP10 is localized to the plasma membrane of hepatocytes and neuro 2A cells. Collectively, these results reveal a novel repressive role for MTF-1 in the regulation of the Zip10 zinc transporter expression by pausing Pol II transcription. ZIP10 may have roles in control of zinc homeostasis in specific sites particularly those of the brain and liver. Within that context ZIP10 may act as an important survival mechanism during periods of zinc inadequacy
Determinants of male reproductive health disorders: the Men in Australia Telephone Survey (MATeS)
Background: The relationship between reproductive health disorders and lifestyle factors in middle-aged and older men is not clear. The aim of this study is to describe lifestyle and biomedical associations as possible causes of erectile dysfunction (ED), prostate disease (PD), lower urinary tract symptoms (LUTS) and perceived symptoms of androgen deficiency (pAD) in a representative population of middle-aged and older men, using the Men in Australia Telephone Survey (MATeS). Methods: A representative sample (n = 5990) of men aged 40+ years, stratified by age and State, was contacted by random selection of households, with an individual response rate of 78%. All men participated in a 20-minute computer-assisted telephone interview exploring general and reproductive health. Associations between male reproductive health disorders and lifestyle and biomedical factors were analysed using multivariate logistic regression (odds ratio [95% confidence interval]). Variables studied included age, body mass index, waist circumference, smoking, alcohol consumption, physical activity, co-morbid disease and medication use for hypertension, high cholesterol and symptoms of depression. Results: Controlling for age and a range of lifestyle and co-morbid exposures, sedentary lifestyle and being underweight was associated with an increased likelihood of ED (1.4 [1.1-1.8]; 2.9 [1.5-5.8], respectively) and pAD (1.3 [1.1-1.7]; 2.7 [1.4-5.0], respectively. Diabetes and cardiovascular disease were both associated with ED, with hypertension strongly associated with LUTS and pAD. Current smoking (inverse association) and depressive symptomatology were the only variables independently associated with PD. All reproductive disorders showed consistent associations with depression (measured either by depressive symptomatology or medication use) in both age-adjusted and multivariate analyses. Conclusion: A range of lifestyle factors, more often associated with chronic disease, were significantly associated with male reproductive health disorders. Education strategies directed to improving general health may also confer benefits to male reproductive health.Carol A. Holden, Robert I. McLachlan, Marian Pitts, Robert Cumming, Gary Wittert, Johnathon P. Ehsani, David M. de Kretser, David J. Handelsma
Interactome Analyses Identify Ties of PrPC and Its Mammalian Paralogs to Oligomannosidic N-Glycans and Endoplasmic Reticulum-Derived Chaperones
The physiological environment which hosts the conformational conversion of the cellular prion protein (PrPC) to disease-associated isoforms has remained enigmatic. A quantitative investigation of the PrPC interactome was conducted in a cell culture model permissive to prion replication. To facilitate recognition of relevant interactors, the study was extended to Doppel (Prnd) and Shadoo (Sprn), two mammalian PrPC paralogs. Interestingly, this work not only established a similar physiological environment for the three prion protein family members in neuroblastoma cells, but also suggested direct interactions amongst them. Furthermore, multiple interactions between PrPC and the neural cell adhesion molecule, the laminin receptor precursor, Na/K ATPases and protein disulfide isomerases (PDI) were confirmed, thereby reconciling previously separate findings. Subsequent validation experiments established that interactions of PrPC with PDIs may extend beyond the endoplasmic reticulum and may play a hitherto unrecognized role in the accumulation of PrPSc. A simple hypothesis is presented which accounts for the majority of interactions observed in uninfected cells and suggests that PrPC organizes its molecular environment on account of its ability to bind to adhesion molecules harboring immunoglobulin-like domains, which in turn recognize oligomannose-bearing membrane proteins