37 research outputs found

    Analysis of the potential of cancer cell lines to release tissue factor-containing microvesicles: correlation with tissue factor and PAR2 expression

    Get PDF
    BackgroundDespite the association of cancer-derived circulating tissue factor (TF)-containing microvesicles and hypercoagulable state, correlations with the incidence of thrombosis remain unclear.MethodsIn this study the upregulation of TF release upon activation of various cancer cell lines, and the correlation with TF and PAR2 expression and/or activity was examined. Microvesicle release was induced by PAR2 activation in seventeen cell lines and released microvesicle density, microvesicle-associated TF activity, and phoshpatidylserine-mediated activity were measured. The time-course for TF release was monitored over 90 min in each cell line. In addition, TF mRNA expression, cellular TF protein and cell-surface TF activities were quantified. Moreover, the relative expression of PAR2 mRNA and cellular protein were analysed. Any correlations between the above parameters were examined by determining the Pearson’s correlation coefficients.ResultsTF release as microvesicles peaked between 30–60 min post-activation in the majority of cell lines tested. The magnitude of the maximal TF release positively correlated with TF mRNA (c = 0.717; p

    Using a computerized provider order entry system to meet the unique prescribing needs of children: description of an advanced dosing model

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It is well known that the information requirements necessary to safely treat children with therapeutic medications cannot be met with the same approaches used in adults. Over a 1-year period, Duke University Hospital engaged in the challenging task of enhancing an established computerized provider order entry (CPOE) system to address the unique medication dosing needs of pediatric patients.</p> <p>Methods</p> <p>An advanced dosing model (ADM) was designed to interact with our existing CPOE application to provide decision support enabling complex pediatric dose calculations based on chronological age, gestational age, weight, care area in the hospital, indication, and level of renal impairment. Given that weight is a critical component of medication dosing that may change over time, alerting logic was added to guard against erroneous entry or outdated weight information.</p> <p>Results</p> <p>Pediatric CPOE was deployed in a staggered fashion across 6 care areas over a 14-month period. Safeguards to prevent miskeyed values became important in allowing providers the flexibility to override the ADM logic if desired. Methods to guard against over- and under-dosing were added. The modular nature of our model allows us to easily add new dosing scenarios for specialized populations as the pediatric population and formulary change over time.</p> <p>Conclusions</p> <p>The medical needs of pediatric patients vary greatly from those of adults, and the information systems that support those needs require tailored approaches to design and implementation. When a single CPOE system is used for both adults and pediatrics, safeguards such as redirection and suppression must be used to protect children from inappropriate adult medication dosing content. Unlike other pediatric dosing systems, our model provides active dosing assistance and dosing process management, not just static dosing advice.</p

    The effect of a clinical pharmacist discharge service on medication discrepancies in patients with heart failure

    Get PDF
    Objective: Heart failure patients are regularly admitted to hospital and frequently use multiple medication. Besides intentional changes in pharmacotherapy, unintentional changes may occur during hospitalisation. The aim of this study was to investigate the effect of a clinical pharmacist discharge service on medication discrepancies and prescription errors in patients with heart failure. Setting: A general teaching hospital in Tilburg, the Netherlands. Method: An open randomized intervention study was performed comparing an intervention group, with a control group receiving regular care by doctors and nurses. The clinical pharmacist discharge service consisted of review of discharge medication, communicating prescribing errors with the cardiologist, giving patients information, preparation of a written overview of the discharge medication and communication to both the community pharmacist and the general practitioner about this medication. Within 6 weeks after discharge all patients were routinely scheduled to visit the outpatient clinic and medication discrepancies were measured. Main outcome measure: The primary endpoint was the frequency of prescription errors in the discharge medication and medication discrepancies after discharge combined. Results: Forty-four patients were included in the control group and 41 in the intervention group. Sixty-eight percent of patients in the control group had at least one discrepancy or prescription error against 39% in the intervention group (RR 0.57 (95% CI 0.37-0.88)). The percentage of medications with a discrepancy or prescription error in the control group was 14.6% and in the intervention group it was 6.1% (RR 0.42 (95% CI 0.27-0.66)). Conclusion: This clinical pharmacist discharge service significantly reduces the risk of discrepancies and prescription errors in medication of patients with heart failure in the 1st month after discharge

    Development of a context model to prioritize drug safety alerts in CPOE systems

    Get PDF
    Background: Computerized physician order entry systems (CPOE) can reduce the number of medication errors and adverse drug events (ADEs) in healthcare institutions. Unfortunately, they tend to produce a large number of partly irrelevant alerts, in turn leading to alert overload and causing alert fatigue. The objective of this work is to identify factors that can be used to prioritize and present alerts depending on the 'context' of a clinical situation. Methods: We used a combination of literature searches and expert interviews to identify and validate the possible context factors. The internal validation of the context factors was performed by calculating the inter-rater agreement of two researcher's classification of 33 relevant articles. Results: We developed a context model containing 20 factors. We grouped these context factors into three categories: characteristics of the patient or case (e. g. clinical status of the patient); characteristics of the organizational unit or user (e. g. professional experience of the user); and alert characteristics (e. g. severity of the effect). The internal validation resulted in nearly perfect agreement (Cohen's Kappa value of 0.97). Conclusion: To our knowledge, this is the first structured attempt to develop a comprehensive context model for prioritizing drug safety alerts in CPOE systems. The outcome of this work can be used to develop future tailored drug safety alerting in CPOE systems

    LEARN 2 MOVE 0-2 years:effects of a new intervention program in infants at very high risk for cerebral palsy; a randomized controlled trial

    Get PDF
    Background: It is widely accepted that infants at risk for cerebral palsy need paediatric physiotherapy. However, there is little evidence for the efficacy of physiotherapeutic intervention. Recently, a new intervention program, COPCA (Coping with and Caring for infants with special needs - a family centered program), was developed. COPCA has educational and motor goals. A previous study indicated that the COPCA-approach is associated with better developmental outcomes for infants at high risk for developmental disorders. LEARN 2 MOVE 0-2 years evaluates the efficacy and the working mechanisms of the COPCA program in infants at very high risk for cerebral palsy in comparison to the efficacy of traditional infant physiotherapy in a randomized controlled trial. The objective is to evaluate the effects of both intervention programs on motor, cognitive and daily functioning of the child and the family and to get insight in the working elements of early intervention methods.Methods/design: Infants are included at the corrected age of 1 to 9 months and randomized into a group receiving COPCA and a group receiving traditional infant physiotherapy. Both interventions are given once a week during one year. Measurements are performed at baseline, during and after the intervention period and at the corrected age of 21 months. Primary outcome of the study is the Infant Motor Profile, a qualitative evaluation instrument of motor behaviour in infancy. Secondary measurements focus on activities and participation, body functions and structures, family functioning, quality of life and working mechanisms. To cope with the heterogeneity in physiotherapy, physiotherapeutic sessions are video-recorded three times (baseline, after 6 months and at the end of the intervention period). Physiotherapeutic actions will be quantified and related to outcome.Discussion: LEARN 2 MOVE 0-2 years evaluates and explores the effects of COPCA and TIP. Whatever the outcome of the project, it will improve our understanding of early intervention in children with cerebral palsy. Such knowledge is a prerequisite for tailor-made guidance of children with CP and their families.Trial registration: The trial is registered under NTR1428.</p

    The effect of an active on-ward participation of hospital pharmacists in Internal Medicine teams on preventable Adverse Drug Events in elderly inpatients: protocol of the WINGS study (Ward-oriented pharmacy in newly admitted geriatric seniors)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The potential of clinical interventions, aiming at reduction of preventable Adverse Drug Events (preventable ADEs) during hospital stay, have been studied extensively. Clinical Pharmacy is a well-established and effective service, usually consisting of full-time on-ward participation of clinical pharmacists in medical teams. Within the current Hospital Pharmacy organisation in the Netherlands, such on-ward service is less feasible and therefore not yet established. However, given the substantial incidence of preventable ADEs in Dutch hospitals found in recent studies, appears warranted. Therefore, "Ward-Oriented Pharmacy", an on-ward service tailored to the Dutch hospital setting, will be developed. This service will consist of multifaceted interventions implemented in the Internal Medicine wards by hospital pharmacists. The effect of this service on preventable ADEs in elderly inpatients will be measured. Elderly patients are at high risk for ADEs due to multi-morbidity, concomitant disabilities and polypharmacy. Most studies on the incidence and preventability of ADEs in elderly patients have been conducted in the outpatient setting or on admission to a hospital, and fewer in the inpatient setting. Moreover, recognition of ADEs by the treating physicians is challenging in elderly patients because their disease presentation is often atypical and complex. Detailed information about the performance of the treating physicians in ADE recognition is scarce.</p> <p>Methods/Design</p> <p>The design is a multi-centre, interrupted time series study. Patients of 65 years or older, consecutively admitted to Internal Medicine wards will be included. After a pre-measurement, a Ward-Oriented Pharmacy service will be introduced and the effect of this service will be assessed during a post-measurement. The primary outcome measures are the ADE prevalence on admission and ADE incidence during hospital stay. These outcomes will be assessed using structured retrospective chart review by an independent expert panel. This assessment will include determination of causality, severity and preventability of ADEs. In addition, the extent to which ADEs are recognised and managed by the treating physicians will be considered.</p> <p>Discussion</p> <p>The primary goal of the WINGS study is to assess whether a significant reduction in preventable ADEs in elderly inpatients can be achieved by a Ward-Oriented Pharmacy service offered. A comprehensive ADE detection method will be used based on expert opinion and retrospective, trigger-tool enhanced, chart review.</p> <p>Trial registration</p> <p>ISRCTN: <a href="http://www.controlled-trials.com/ISRCTN64974377">ISRCTN64974377</a></p
    corecore