37 research outputs found

    Expression of Cystathionine β-synthase and Cystathionine γ-lyase in Human Pregnant Myometrium and Their Roles in the Control of Uterine Contractility

    Get PDF
    BACKGROUND: Human uterus undergoes distinct molecular and functional changes during pregnancy and parturition. Hydrogen sulfide (H(2)S) has recently been shown to play a key role in the control of smooth muscle tension. The role of endogenous H(2)S produced locally in the control of uterine contractility during labour is unknown. METHODOLOGY/PRINCIPAL FINDINGS: Human myometrium biopsies were obtained from pregnant women undergoing cesarean section at term. Immunohistochemistry analysis showed that cystathionine-γ-lyase (CSE) and cystathionine-β-synthetase (CBS), the principle enzymes responsible for H(2)S generation, were mainly localized to smooth muscle cells of human pregnant myometrium. The mRNA and protein expression of CBS as well as H(2)S production rate were down-regulated in labouring tissues compared to nonlabouring tissues. Cumulative administration of L-cysteine (10(-7)-10(-2) mol/L), a precursor of H(2)S, caused a dose-dependent decrease in the amplitude of spontaneous contractions in nonlabouring and labouring myometrium strips. L-cysteine at high concentration (10(-3) mol/L) increased the frequency of spontaneous contractions and induced tonic contraction. These effects of L-cysteine were blocked by the inhibitors of CBS and CSE. Pre-treatment of myometrium strips with glibenclamide, an inhibitor of ATP-sensitive potassium (K(ATP)) channels, abolished the inhibitory effect of L-cysteine on spontaneous contraction amplitude. The effects of L-cysteine on the amplitude of spontaneous contractions and baseline muscle tone were less potent in labouring tissues than that in nonlabouring strips. CONCLUSION/SIGNIFICANCE: H(2)S generated by CSE and CBS locally exerts dual effects on the contractility of pregnant myometrium. Expression of H(2)S synthetic enzymes is down-regulated during labour, suggesting that H(2)S is one of the factors involved in the transition of pregnant uterus from quiescence to contractile state after onset of parturition

    Dissociation between the Activity of the Right Middle Frontal Gyrus and the Middle Temporal Gyrus in Processing Semantic Priming

    Get PDF
    The aim of this event-related functional magnetic resonance imaging (fMRI) study was to test whether the right middle frontal gyrus (MFG) and middle temporal gyrus (MTG) would show differential sensitivity to the effect of prime-target association strength on repetition priming. In the experimental condition (RP), the target occurred after repetitive presentation of the prime within an oddball design. In the control condition (CTR), the target followed a single presentation of the prime with equal probability of the target as in RP. To manipulate semantic overlap between the prime and the target both conditions (RP and CTR) employed either the onomatopoeia “oink” as the prime and the referent “pig” as the target (OP) or vice-versa (PO) since semantic overlap was previously shown to be greater in OP. The results showed that the left MTG was sensitive to release of adaptation while both the right MTG and MFG were sensitive to sequence regularity extraction and its verification. However, dissociated activity between OP and PO was revealed in RP only in the right MFG. Specifically, target “pig” (OP) and the physically equivalent target in CTR elicited comparable deactivations whereas target “oink” (PO) elicited less inhibited response in RP than in CTR. This interaction in the right MFG was explained by integrating these effects into a competition model between perceptual and conceptual effects in priming processing

    Surprised at All the Entropy: Hippocampal, Caudate and Midbrain Contributions to Learning from Prediction Errors

    Get PDF
    Influential concepts in neuroscientific research cast the brain a predictive machine that revises its predictions when they are violated by sensory input. This relates to the predictive coding account of perception, but also to learning. Learning from prediction errors has been suggested for take place in the hippocampal memory system as well as in the basal ganglia. The present fMRI study used an action-observation paradigm to investigate the contributions of the hippocampus, caudate nucleus and midbrain dopaminergic system to different types of learning: learning in the absence of prediction errors, learning from prediction errors, and responding to the accumulation of prediction errors in unpredictable stimulus configurations. We conducted analyses of the regions of interests' BOLD response towards these different types of learning, implementing a bootstrapping procedure to correct for false positives. We found both, caudate nucleus and the hippocampus to be activated by perceptual prediction errors. The hippocampal responses seemed to relate to the associative mismatch between a stored representation and current sensory input. Moreover, its response was significantly influenced by the average information, or Shannon entropy of the stimulus material. In accordance with earlier results, the habenula was activated by perceptual prediction errors. Lastly, we found that the substantia nigra was activated by the novelty of sensory input. In sum, we established that the midbrain dopaminergic system, the hippocampus, and the caudate nucleus were to different degrees significantly involved in the three different types of learning: acquisition of new information, learning from prediction errors and responding to unpredictable stimulus developments. We relate learning from perceptual prediction errors to the concept of predictive coding and related information theoretic accounts

    Critical threshold size for overwintering sandeels (Ammodytes marinus)

    No full text
    Several ecologically and commercially important fish species spend the winter in a state of minimum feeding activity and at lower risk of predation. To enable this overwintering behaviour, energetic reserves are generated prior to winter to support winter metabolism. Maintenance metabolism in fish scales with body size and increases with temperature, and the two factors together determine a critical threshold size for passive overwintering below which the organism is unlikely to survive without feeding. This is because the energetic cost of metabolism exceeds maximum energy reserves. In the present study, we estimated the energetic cost of overwintering from a bioenergetic model. The model was parameterised using respirometry-based measurements of standard metabolic rate in buried A. tobianus (a close relative to A. marinus) at temperatures from 5.3 to 18.3 degrees C and validated with two independent long-term overwintering experiments. Maximum attainable energy reserves were estimated from published data on A. marinus in the North Sea. The critical threshold size in terms of length (L(th)) for A. marinus in the North Sea was estimated to be 9.5 cm. We then investigated two general predictions: (1) Fish smaller than L(th) display winter feeding activity, and (2) size at maturation of iteroparous species is larger than L(th) to ensure sufficient energy reserves to accommodate both the metabolic cost of passive overwintering and reproductive investments. Both predictions were found to be consistent with data on size at maturation and total body energy in December and February
    corecore