949 research outputs found

    Nemo: a computational tool for analyzing nematode locomotion

    Get PDF
    The nematode Caenorhabditis elegans responds to an impressive range of chemical, mechanical and thermal stimuli and is extensively used to investigate the molecular mechanisms that mediate chemosensation, mechanotransduction and thermosensation. The main behavioral output of these responses is manifested as alterations in animal locomotion. Monitoring and examination of such alterations requires tools to capture and quantify features of nematode movement. In this paper, we introduce Nemo (nematode movement), a computationally efficient and robust two-dimensional object tracking algorithm for automated detection and analysis of C. elegans locomotion. This algorithm enables precise measurement and feature extraction of nematode movement components. In addition, we develop a Graphical User Interface designed to facilitate processing and interpretation of movement data. While, in this study, we focus on the simple sinusoidal locomotion of C. elegans, our approach can be readily adapted to handle complicated locomotory behaviour patterns by including additional movement characteristics and parameters subject to quantification. Our software tool offers the capacity to extract, analyze and measure nematode locomotion features by processing simple video files. By allowing precise and quantitative assessment of behavioral traits, this tool will assist the genetic dissection and elucidation of the molecular mechanisms underlying specific behavioral responses.Comment: 12 pages, 2 figures. accepted by BMC Neuroscience 2007, 8:8

    Dimensionality and dynamics in the behavior of C. elegans

    Get PDF
    A major challenge in analyzing animal behavior is to discover some underlying simplicity in complex motor actions. Here we show that the space of shapes adopted by the nematode C. elegans is surprisingly low dimensional, with just four dimensions accounting for 95% of the shape variance, and we partially reconstruct "equations of motion" for the dynamics in this space. These dynamics have multiple attractors, and we find that the worm visits these in a rapid and almost completely deterministic response to weak thermal stimuli. Stimulus-dependent correlations among the different modes suggest that one can generate more reliable behaviors by synchronizing stimuli to the state of the worm in shape space. We confirm this prediction, effectively "steering" the worm in real time.Comment: 9 pages, 6 figures, minor correction

    The Carbon_h-Factor: Predicting Individuals' Research Impact at Early Stages of Their Career

    Get PDF
    Assessing an individual's research impact on the basis of a transparent algorithm is an important task for evaluation and comparison purposes. Besides simple but also inaccurate indices such as counting the mere number of publications or the accumulation of overall citations, and highly complex but also overwhelming full-range publication lists in their raw format, Hirsch (2005) introduced a single figure cleverly combining different approaches. The so-called h-index has undoubtedly become the standard in scientometrics of individuals' research impact (note: in the present paper I will always use the term “research impact” to describe the research performance as the logic of the paper is based on the h-index, which quantifies the specific “impact” of, e.g., researchers, but also because the genuine meaning of impact refers to quality as well). As the h-index reflects the number h of papers a researcher has published with at least h citations, the index is inherently positively biased towards senior level researchers. This might sometimes be problematic when predictive tools are needed for assessing young scientists' potential, especially when recruiting early career positions or equipping young scientists' labs. To be compatible with the standard h-index, the proposed index integrates the scientist's research age (Carbon_h-factor) into the h-index, thus reporting the average gain of h-index per year. Comprehensive calculations of the Carbon_h-factor were made for a broad variety of four research-disciplines (economics, neuroscience, physics and psychology) and for researchers performing on three high levels of research impact (substantial, outstanding and epochal) with ten researchers per category. For all research areas and output levels we obtained linear developments of the h-index demonstrating the validity of predicting one's later impact in terms of research impact already at an early stage of their career with the Carbon_h-factor being approx. 0.4, 0.8, and 1.5 for substantial, outstanding and epochal researchers, respectively

    A C-elegans stretch receptor neuron revealed by a mechanosensitive TRP channel homologue

    Get PDF
    The nematode Caenorhabditis elegans is commonly used as a genetic model organism for dissecting integration of the sensory and motor systems(1). Despite extensive genetic and behavioural analyses that have led to the identification of many genes and neural circuits involved in regulating C. elegans locomotion behaviour(1), it remains unclear whether and how somatosensory feedback modulates motor output during locomotion. In particular, no stretch receptors have been identified in C. elegans, raising the issue of whether stretch-receptor-mediated proprioception is used by C. elegans to regulate its locomotion behaviour. Here we have characterized TRP-4, the C. elegans homologue of the mechanosensitive TRPN channel. We show that trp-4 mutant worms bend their body abnormally, exhibiting a body posture distinct from that of wild-type worms during locomotion, suggesting that TRP-4 is involved in stretch-receptor-mediated proprioception. We show that TRP-4 acts in a single neuron, DVA, to mediate its function in proprioception, and that the activity of DVA can be stimulated by body stretch. DVA both positively and negatively modulates locomotion, providing a unique mechanism whereby a single neuron can fine-tune motor activity. Thus, DVA represents a stretch receptor neuron that regulates sensory - motor integration during C. elegans locomotion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62770/1/nature04538.pd

    Ultraviolet radiation shapes seaweed communities

    Get PDF
    corecore