1,016 research outputs found

    Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3

    Get PDF
    How a certain ground state of complex physical systems emerges, especially in two-dimensional materials, is a fundamental question in condensed-matter physics. A particularly interesting case is systems belonging to the class of XY Hamiltonian where the magnetic order parameter of conventional nature is unstable in two-dimensional materials leading to a Berezinskii-Kosterlitz-Thouless transition. Here, we report how the XXZ-type antiferromagnetic order of a magnetic van der Waals material, NiPS3, behaves upon reducing the thickness and ultimately becomes unstable in the monolayer limit. Our experimental data are consistent with the findings based on renormalization group theory that at low temperatures a two-dimensional XXZ system behaves like a two-dimensional XY one, which cannot have a long-range order at finite temperatures. This work provides experimental examination of the XY magnetism in the atomically thin limit and opens new opportunities of exploiting these fundamental theorems of magnetism using magnetic van der Waals materials.Comment: 57 pages, 24 figures (including Supplementary Information

    Heat transport study of the spin liquid candidate 1T-TaS2

    Get PDF
    We present the ultra-low-temperature thermal conductivity measurements on single crystals of the prototypical charge-density-wave material 1TT-TaS2_2, which was recently argued to be a candidate for quantum spin liquid. Our experiments show that the residual linear term of thermal conductivity at zero field is essentially zero, within the experimental accuracy. Furthermore, the thermal conductivity is found to be insensitive to the magnetic field up to 9 T. These results clearly demonstrate the absence of itinerant magnetic excitations with fermionic statistics in bulk 1TT-TaS2_2 and, thus, put a strong constraint on the theories of the ground state of this material.Comment: 5 pages, 3 figure

    The low-temperature highly correlated quantum phase in the charge-density-wave 1T-TaS_2 compound

    Full text link
    A prototypical quasi-2D metallic compound, 1T-TaS_2 has been extensively studied due to an intricate interplay between a Mott-insulating ground state and a charge density-wave (CDW) order. In the low-temperature phase, 12 out of 13 Ta_{4+} 5\textit{d}-electrons form molecular orbitals in hexagonal star-of-David patterns, leaving one 5\textit{d}-electron with \textit{S} = 1/2 spin free. This orphan quantum spin with a large spin-orbit interaction is expected to form a highly correlated phase of its own. And it is most likely that they will form some kind of a short-range order out of a strongly spin-orbit coupled Hilbert space. In order to investigate the low-temperature magnetic properties, we performed a series of measurements including neutron scattering and muon experiments. The obtained data clearly indicate the presence of the short-ranged phase and put the upper bound on ~ 0.4 \textit{\mu}_B for the size of the magnetic moment, consistent with the orphan-spin scenario.Comment: 11 pages, 4 figures + supplemental material. Accepted by npj Quantum Material

    Magnetic excitations of the Cu2+^{2+} quantum spin chain in Sr3_3CuPtO6_6

    Get PDF
    We report the magnetic excitation spectrum as measured by inelastic neutron scattering for a polycrystalline sample of Sr3_3CuPtO6_6. Modeling the data by the 2+4 spinon contributions to the dynamical susceptibility within the chains, and with interchain coupling treated in the random phase approximation, accounts for the major features of the powder-averaged structure factor. The magnetic excitations broaden considerably as temperature is raised, persisting up to above 100 K and displaying a broad transition as previously seen in the susceptibility data. No spin gap is observed in the dispersive spin excitations at low momentum transfer, which is consistent with the gapless spinon continuum expected from the coordinate Bethe ansatz. However, the temperature dependence of the excitation spectrum gives evidence of some very weak interchain coupling.Comment: 9 pages, 5 figure

    Possible glass-like random singlet magnetic state in 1T-TaS2

    Full text link
    Two-dimensional layered transition-metal-dichalcogenide compound 1T-TaS2 shows the rare coexistence of charge density wave (CDW) and electron correlation driven Mott transition. In addition, atomic-cluster spins on the triangular lattice of the CDW state of 1T-TaS2 give rise to the possibility of the exotic spin-singlet state in which quantum fluctuations of spins are strong enough to prevent any long range magnetic ordering down to absolute zero ( 0 K). We present here the evidences of a glass-like random singlet magnetic state in 1T-TaS2 at low temperatures through a study of temperature and time dependence of magnetization. Comparing the experimental results with a representative canonical spin-glass system Au(1.8%Mn), we show that this glass-like state is distinctly different from the well established canonical spin-glass state.Comment: 11 pages, 6 figure

    Rapid suppression of quantum many-body magnetic exciton in doped van der Waals antiferromagnet (Ni,Cd)PS3

    Full text link
    The unique discovery of magnetic exciton in van der Waals antiferromagnet NiPS3 arises between two quantum many-body states of a Zhang-Rice singlet excited state and a Zhang-Rice triplet ground state. Simultaneously, the spectral width of photoluminescence originating from this exciton is exceedingly narrow as 0.4 meV. These extraordinary properties, including the extreme coherence of the magnetic exciton in NiPS3, beg many questions. We studied doping effects using Ni1-xCdxPS3 using two experimental techniques and theoretical studies. Our experimental results show that the magnetic exciton is drastically suppressed upon a few % Cd doping. All these happen while the width of the exciton only gradually increases, and the antiferromagnetic ground state is robust. These results highlight the lattice uniformity's hidden importance as a prerequisite for coherent magnetic exciton. Finally, an exciting scenario emerges: the broken charge transfer forbids the otherwise uniform formation of the coherent magnetic exciton in (Ni,Cd)PS3.Comment: 40 pages, 4 main figures, 13 supporting figures, accepted by Nano Letter
    • …
    corecore