146 research outputs found

    Medial patellofemoral ligament injury patterns and associated pathology in lateral patella dislocation: an MRI study

    Get PDF
    BACKGROUND: Lateral Patella dislocations are common injuries seen in the active and young adult populations. Our study focus was to evaluate medial patellofemoral ligament (MPFL) injury patterns and associated knee pathology using Magnetic Resonance Imaging studies. METHODS: MRI studies taken at one imaging site between January, 2007 to January, 2008 with the final diagnosis of patella dislocation were screened for this study. Of the 324 cases that were found, 195 patients with lateral patellar dislocation traumatic enough to cause bone bruises on the lateral femoral trochlea and the medial facet of the patella were selected for this study. The MRI images were reviewed by three independent observers for location and type of MPFL injury, osteochondral defects, loose bodies, MCL and meniscus tears. The data was analyzed as a single cohort and by gender. RESULTS: This study consisted of 127 males and 68 females; mean age of 23 yrs. Tear of the MPFL at the patellar attachment occurred in 93/195 knees (47%), at the femoral attachment in 50/195 knees (26%), and at both the femoral and patella attachment sites in 26/195 knees (13%). Attenuation of the MPFL without rupture occurred in 26/195 knees (13%). Associated findings included loose bodies in 23/195 (13%), meniscus tears 41/195 (21%), patella avulsion/fracture in 14/195 (7%), medial collateral ligament sprains/tears in 37/195 (19%) and osteochondral lesions in 96/195 knees (49%). Statistical analysis showed females had significantly more associated meniscus tears than the males (27% vs. 17%, p = 0.04). Although not statistically significant, osteochondral lesions were seen more in male patients with acute patella dislocation (52% vs. 42%, p = 0.08). CONCLUSION: Patients who present with lateral patella dislocation with the classic bone bruise pattern seen on MRI will likely rupture the MPFL at the patellar side. Females are more likely to have an associated meniscal tear than males; however, more males have underlying osteochondral lesions. Given the high percentage of associated pathology, we recommend a MRI of the knee in all patients who present with acute patella dislocation

    Successful management of an aortoesophageal fistula caused by a fish bone – case report and review of literature

    Get PDF
    We report a case of aortoesophageal fistula (AEF) caused by a fish bone that had a successful outcome. Aortoesophageal fistula is a rare complication of foreign body ingestion from which few patients survive. Over one hundred cases of AEF secondary to foreign body ingestion have been documented but only seven, including our case, have survived over 12 months. Treatment involved stabilising the patient with a Sengstaken-Blakemore tube and insertion of a thoracic aortic endovascular stent-graft. Unfortunately the stent became infected and definitive open surgical repair involved removing the stent, replacing the aorta with a homograft and coverage with a left trapezius flap while under deep hypothermic arrest

    Investigation of Cellular and Molecular Responses to Pulsed Focused Ultrasound in a Mouse Model

    Get PDF
    Continuous focused ultrasound (cFUS) has been widely used for thermal ablation of tissues, relying on continuous exposures to generate temperatures necessary to induce coagulative necrosis. Pulsed FUS (pFUS) employs non-continuous exposures that lower the rate of energy deposition and allow cooling to occur between pulses, thereby minimizing thermal effects and emphasizing effects created by non-thermal mechanisms of FUS (i.e., acoustic radiation forces and acoustic cavitation). pFUS has shown promise for a variety of applications including drug and nanoparticle delivery; however, little is understood about the effects these exposures have on tissue, especially with regard to cellular pro-homing factors (growth factors, cytokines, and cell adhesion molecules). We examined changes in murine hamstring muscle following pFUS or cFUS and demonstrate that pFUS, unlike cFUS, has little effect on the histological integrity of muscle and does not induce cell death. Infiltration of macrophages was observed 3 and 8 days following pFUS or cFUS exposures. pFUS increased expression of several cytokines (e.g., IL-1α, IL-1β, TNFα, INFγ, MIP-1α, MCP-1, and GMCSF) creating a local cytokine gradient on days 0 and 1 post-pFUS that returns to baseline levels by day 3 post-pFUS. pFUS exposures induced upregulation of other signaling molecules (e.g., VEGF, FGF, PlGF, HGF, and SDF-1α) and cell adhesion molecules (e.g., ICAM-1 and VCAM-1) on muscle vasculature. The observed molecular changes in muscle following pFUS may be utilized to target cellular therapies by increasing homing to areas of pathology

    Delayed Recovery of Skeletal Muscle Mass following Hindlimb Immobilization in mTOR Heterozygous Mice

    Get PDF
    The present study addressed the hypothesis that reducing mTOR, as seen in mTOR heterozygous (+/−) mice, would exaggerate the changes in protein synthesis and degradation observed during hindlimb immobilization as well as impair normal muscle regrowth during the recovery period. Atrophy was produced by unilateral hindlimb immobilization and data compared to the contralateral gastrocnemius. In wild-type (WT) mice, the gradual loss of muscle mass plateaued by day 7. This response was associated with a reduction in basal protein synthesis and development of leucine resistance. Proteasome activity was consistently elevated, but atrogin-1 and MuRF1 mRNAs were only transiently increased returning to basal values by day 7. When assessed 7 days after immobilization, the decreased muscle mass and protein synthesis and increased proteasome activity did not differ between WT and mTOR+/− mice. Moreover, the muscle inflammatory cytokine response did not differ between groups. After 10 days of recovery, WT mice showed no decrement in muscle mass, and this accretion resulted from a sustained increase in protein synthesis and a normalization of proteasome activity. In contrast, mTOR+/− mice failed to fully replete muscle mass at this time, a defect caused by the lack of a compensatory increase in protein synthesis. The delayed muscle regrowth of the previously immobilized muscle in the mTOR+/− mice was associated with a decreased raptor•4EBP1 and increased raptor•Deptor binding. Slowed regrowth was also associated with a sustained inflammatory response (e.g., increased TNFα and CD45 mRNA) during the recovery period and a failure of IGF-I to increase as in WT mice. These data suggest mTOR is relatively more important in regulating the accretion of muscle mass during recovery than the loss of muscle during the atrophy phase, and that protein synthesis is more sensitive than degradation to the reduction in mTOR during muscle regrowth

    Successful Weight Loss Surgery Improves Eating Control and Energy Metabolism: A Review of the Evidence

    Get PDF
    Eating behavior is determined by a balance of memories in terms of reward and punishment to satisfy the urge to consume food. Refilling empty energy stores and hedonistic motivation are rewarding aspects of eating. Overfeeding, associated adverse GI effects, and obesity implicate punishment. In the current review, evidence is given for the hypothesis that bariatric surgery affects control over eating behavior.Moreover, any caloric overload will reduce the feeling of satiety. Durable weight loss after bariatric surgery is probably the result of a new equilibrium between reward and punishment, together with a better signaling of satiation due to beneficial metabolic changes.We propose to introduce three main treatment goals for bariatric surgery: 1) acceptable weight loss, 2) improvement of eating control, and 3) metabolic benefit. To achieve this goal, loss of 50% to 70% of excess weight will be appropriate (i.e. 30% to 40% loss of initial weight), depending on the degree of obesity prior to operation

    Origins of the Tumor Microenvironment: Quantitative Assessment of Adipose-Derived and Bone Marrow–Derived Stroma

    Get PDF
    To meet the requirements for rapid tumor growth, a complex array of non-neoplastic cells are recruited to the tumor microenvironment. These cells facilitate tumor development by providing matrices, cytokines, growth factors, as well as vascular networks for nutrient and waste exchange, however their precise origins remain unclear. Through multicolored tissue transplant procedures; we have quantitatively determined the contribution of bone marrow-derived and adipose-derived cells to stromal populations within syngeneic ovarian and breast murine tumors. Our results indicate that subpopulations of tumor-associated fibroblasts (TAFs) are recruited from two distinct sources. The majority of fibroblast specific protein (FSP) positive and fibroblast activation protein (FAP) positive TAFs originate from mesenchymal stem/stromal cells (MSC) located in bone marrow sources, whereas most vascular and fibrovascular stroma (pericytes, α-SMA+ myofibroblasts, and endothelial cells) originates from neighboring adipose tissue. These results highlight the capacity for tumors to utilize multiple sources of structural cells in a systematic and discriminative manner

    Overconfidence in Labor Markets

    Get PDF
    This chapter reviews how worker overconfidence affects labor markets. Evidence from psychology and economics shows that in many situations, most people tend to overestimate their absolute skills, overplace themselves relative to others, and overestimate the precision of their knowledge. The chapter starts by reviewing evidence for overconfidence and for how overconfidence affects economic choices. Next, it reviews economic explanations for overconfidence. After that, it discusses research on the impact of worker overconfidence on labor markets where wages are determined by bargaining between workers and firms. Here, three key questions are addressed. First, how does worker overconfidence affect effort provision for a fixed compensation scheme? Second, how should firms design compensation schemes when workers are overconfident? In particular, will a compensation scheme offered to an overconfident worker have higher-or lower-powered incentives than that offered to a worker with accurate self-perception? Third, can worker overconfidence lead to a Pareto improvement? The chapter continues by reviewing research on the impact of worker overconfidence on labor markets where workers can move between firms and where neither firms nor workers have discretion over wage setting. The chapter concludes with a summary of its main findings and a discussion of avenues for future research
    corecore