10 research outputs found

    Synthesis and Pharmacological Evaluation of 6-Acetyl-3-(4-(4-(4-fluorophenyl)piperazin-1-yl)butyl)benzo[d]oxazol-2(3H)-one (SN79), a Cocaine Antagonist, in Rodents

    No full text
    Cocaine interacts with monoamine transporters and sigma (σ) receptors, providing logical targets for medication development. In the present study, in vitro and in vivo pharmacological studies were conducted to characterize SN79, a novel compound which was evaluated for cocaine antagonist actions. Radioligand binding studies showed that SN79 had a nanomolar affinity for σ receptors and a notable affinity for 5-HT2 receptors, and monoamine transporters. It did not inhibit major cytochrome P450 enzymes, including CYP1A2, CYP2A6, CYP2C19, CYP2C9*1, CYP2D6, and CYP3A4, suggesting a low propensity for potential drug–drug interactions. Oral administration of SN79 reached peak in vivo concentrations after 1.5 h and exhibited a half-life of just over 7.5 h in male, Sprague–Dawley rats. Behavioral studies conducted in male, Swiss Webster mice, intraperitoneal or oral dosing with SN79 prior to a convulsive or locomotor stimulant dose of cocaine led to a significant attenuation of cocaine-induced convulsions and locomotor activity. However, SN79 produced sedation and motor incoordination on its own at higher doses, to which animals became tolerant with repeated administration. SN79 also significantly attenuated the development and expression of the sensitized response to repeated cocaine exposures. The ability of SN79 to significantly attenuate the acute and subchronic effects of cocaine provides a promising compound lead to the development of an effective pharmacotherapy against cocaine

    Crystal structure of the human σ1 receptor

    No full text
    The human σ1 receptor is an enigmatic endoplasmic-reticulum-resident transmembrane protein implicated in a variety of disorders including depression, drug addiction, and neuropathic pain. Recently, an additional connection to amyotrophic lateral sclerosis has emerged from studies of human genetics and mouse models. Unlike many transmembrane receptors that belong to large, extensively studied families such as G-protein-coupled receptors or ligand-gated ion channels, the σ1 receptor is an evolutionary isolate with no discernible similarity to any other human protein. Despite its increasingly clear importance in human physiology and disease, the molecular architecture of the σ1 receptor and its regulation by drug-like compounds remain poorly defined. Here we report crystal structures of the human σ1 receptor in complex with two chemically divergent ligands, PD144418 and 4-IBP. The structures reveal a trimeric architecture with a single transmembrane domain in each protomer. The carboxy-terminal domain of the receptor shows an extensive flat, hydrophobic membrane-proximal surface, suggesting an intimate association with the cytosolic surface of the endoplasmic reticulum membrane in cells. This domain includes a cupin-like β-barrel with the ligand-binding site buried at its centre. This large, hydrophobic ligand-binding cavity shows remarkable plasticity in ligand recognition, binding the two ligands in similar positions despite dissimilar chemical structures. Taken together, these results reveal the overall architecture, oligomerization state, and molecular basis for ligand recognition by this important but poorly understood protein

    The Role of Sigma Receptors in Depression

    No full text

    Sigma receptors [ σ

    No full text
    corecore