9 research outputs found

    Surface conditioning with escherichia coli cell wall components can reduce biofilm formation by decreasing initial adhesion

    Get PDF
    Bacterial adhesion and biofilm formation on food processing surfaces pose major risks to human health. Non-efficient cleaning of equipment surfaces and piping can act as a conditioning layer that affects the development of a new biofilm post-disinfection. We have previously shown that surface conditioning with cell extracts could reduce biofilm formation. In the present work, we hypothesized that E. coli cell wall components could be implicated in this phenomena and therefore mannose, myristic acid and palmitic acid were tested as conditioning agents. To evaluate the effect of surface conditioning and flow topology on biofilm formation, assays were performed in agitated 96-well microtiter plates and in a parallel plate flow chamber (PPFC), both operated at the same average wall shear stress (0.07 Pa) as determined by computational fluid dynamics (CFD). It was observed that when the 96-well microtiter plate and the PPFC were used to form biofilms at the same shear stress, similar results were obtained. This shows that the referred hydrodynamic feature may be a good scale-up parameter from high-throughput platforms to larger scale flow cell systems as the PPFC used in this study. Mannose did not have any effect on E. coli biofilm formation, but myristic and palmitic acid inhibited biofilm development by decreasing cell adhesion (in about 50%). These results support the idea that in food processing equipment where biofilm formation is not critical below a certain threshold, bacterial lysis and adsorption of cell components to the surface may reduce biofilm buildup and extend the operational time. (c) 2017 Filipe J. Mergulhão, et al., licensee AIMS Press

    Numerical investigation of two-phase flow induced local fluctuations and interactions of flow properties through elbow.

    Get PDF
    The local interactions and fluctuations of multiphase flow properties present in upward slug/churn flow patterns through a 900 pipe bend has been investigated. Numerical modelling technique using the Volume of Fluid method (VOF) and Reynolds Averaged Naiver-Stokes equation (RANS) was used in this study. Validation of the modelling approach was carried out using the void fraction signals from the simulation and its PDF result. These signals compared well with reported experimental results for slug and churn flow patterns. Result analysis which focused on velocity and pressure fluctuations at three different cross-sectional planes of the elbow showed a reduction in the fluctuation energy (PSD) of the velocity signal at the downstream locations compared to the upstream. Similar behaviour was seen in the pressure signal. The observation was attributed to the change in multiphase flow patterns from slug to stratified/stratified wavy flow pattern after the bend. The results from this study intend to inform enhanced description of the local fluctuations of slug geometry, density and frequency for the accurate prediction of flow induced fluctuating forces due to slug-churn turbulent flows at pipe bends

    Genomics and epidemiology of the P.1 SARS-CoV-2 lineage in Manaus, Brazil

    No full text
    Cases of SARS-CoV-2 infection in Manaus, Brazil, resurged in late 2020, despite previously high levels of infection. Genome sequencing of viruses sampled in Manaus between November 2020 and January 2021 revealed the emergence and circulation of a novel SARS-CoV-2 variant of concern. Lineage P.1, acquired 17 mutations, including a trio in the spike protein (K417T, E484K and N501Y) associated with increased binding to the human ACE2 receptor. Molecular clock analysis shows that P.1 emergence occurred around mid-November 2020 and was preceded by a period of faster molecular evolution. Using a two-category dynamical model that integrates genomic and mortality data, we estimate that P.1 may be 1.7-2.4-fold more transmissible, and that previous (non-P.1) infection provides 54-79% of the protection against infection with P.1 that it provides against non-P.1 lineages. Enhanced global genomic surveillance of variants of concern, which may exhibit increased transmissibility and/or immune evasion, is critical to accelerate pandemic responsiveness
    corecore