131 research outputs found

    Movement and habitat use of the snapping turtle in an urban landscape

    Get PDF
    In order to effectively manage urban habitats, it is important to incorporate the spatial ecology and habitat use of the species utilizing them. Our previous studies have shown that the distribution of upland habitats surrounding a highly urbanized wetland habitat, the Central Canal (Indianapolis, IN, USA) influences the distribution of map turtles (Graptemys geographica) and red-eared sliders (Trachemys scripta) during both the active season and hibernation. In this study we detail the movements and habitat use of another prominent member of the Central Canal turtle assemblage, the common snapping turtle, Chelydra serpentina. We find the same major upland habitat associations for C. serpentina as for G. geographica and T. scripta, despite major differences in their activity (e.g., C. serpentina do not regularly engage in aerial basking). These results reinforce the importance of recognizing the connection between aquatic and surrounding terrestrial habitats, especially in urban ecosystems

    Activity and expression of progesterone metabolizing 5α-reductase, 20α-hydroxysteroid oxidoreductase and 3α(β)-hydroxysteroid oxidoreductases in tumorigenic (MCF-7, MDA-MB-231, T-47D) and nontumorigenic (MCF-10A) human breast cancer cells

    Get PDF
    BACKGROUND: Recent observations indicate that human tumorous breast tissue metabolizes progesterone differently than nontumorous breast tissue. Specifically, 5α-reduced metabolites (5α-pregnanes, shown to stimulate cell proliferation and detachment) are produced at a significantly higher rate in tumorous tissue, indicating increased 5α-reductase (5αR) activity. Conversely, the activities of 3α-hydroxysteroid oxidoreductase (3α-HSO) and 20α-HSO enzymes appeared to be higher in normal tissues. The elevated conversion to 5α-pregnanes occurred regardless of estrogen (ER) or progesterone (PR) receptor levels. To gain insight into these differences, the activities and expression of these progesterone converting enzymes were investigated in a nontumorigenic cell line, MCF-10A (ER- and PR-negative), and the three tumorigenic cell lines, MDA-MB-231 (ER- and PR-negative), MCF-7 and T-47D (ER- and PR-positive). METHODS: For the enzyme activity studies, either whole cells were incubated with [(14)C]progesterone for 2, 4, 8, and 24 hours, or the microsomal/cytosolic fraction was incubated for 15–60 minutes with [(3)H]progesterone, and the metabolites were identified and quantified. Semi-quantitative RT-PCR was employed to determine the relative levels of expression of 5αR type1 (SRD5A1), 5αR type 2 (SRD5A2), 20α-HSO (AKR1C1), 3α-HSO type 2 (AKR1C3), 3α-HSO type 3 (AKR1C2) and 3β-HSO (HSD3B1/HSD3B2) in the four cell lines using 18S rRNA as an internal control. RESULTS: The relative 5α-reductase activity, when considered as a ratio of 5α-pregnanes/4-pregnenes, was 4.21 (± 0.49) for MCF-7 cells, 6.24 (± 1.14) for MDA-MB-231 cells, 4.62 (± 0.43) for T-47D cells and 0.65 (± 0.07) for MCF-10A cells, constituting approximately 6.5-fold, 9.6-fold and 7.1 fold higher conversion to 5α-pregnanes in the tumorigenic cells, respectively, than in the nontumorigenic MCF-10A cells. Conversely, the 20α-HSO and 3α-HSO activities were significantly higher (p < 0.001) in MCF-10A cells than in the other three cell types. In the MCF-10A cells, 20α-HSO activity was 8-14-fold higher and the 3α-HSO activity was 2.5-5.4-fold higher than in the other three cell types. The values of 5αR:20α-HSO ratios were 16.9 – 32.6-fold greater and the 5αR:3α-HSO ratios were 5.2 – 10.5-fold greater in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. RT-PCR showed significantly higher expression of 5αR1 (p < 0.001), and lower expression of 20α-HSO (p < 0.001), 3α-HSO2 (p < 0.001), 3α-HSO3 (p < 0.001) in MCF-7, MDA-MB-231 and T-47D cells than in MCF-10A cells. CONCLUSION: The findings provide the first evidence that the 5αR activity (leading to the conversion of progesterone to the cancer promoting 5α-pregnanes) is significantly higher in the tumorigenic MCF-7, MDA-MB-231 and T-47D breast cell lines than in the nontumorigenic MCF-10A cell line. The higher 5αR activity coincides with significantly greater expression of 5αR1. On the other hand, the activities of 20α-HSO and 3α-HSO are higher in the MCF-10A cells than in MCF-7, MDA-MB-231 and T-47D cells; these differences in activity correlate with significantly higher expression of 20α-HSO, 3α-HSO2 and 3α-HSO3 in MCF-10A cells. Changes in progesterone metabolizing enzyme expression (resulting in enzyme activity changes) may be responsible for stimulating breast cancer by increased production of tumor-promoting 5α-pregnanes and decreased production of anti-cancer 20α – and 3α-4-pregnenes

    Correlation of expression of BP1, a homeobox gene, with estrogen receptor status in breast cancer

    Get PDF
    BACKGROUND: BP1 is a novel homeobox gene cloned in our laboratory. Our previous studies in leukemia demonstrated that BP1 has oncogenic properties, including as a modulator of cell survival. Here BP1 expression was examined in breast cancer, and the relationship between BP1 expression and clinicopathological data was determined. METHODS: Total RNA was isolated from cell lines, tumors, and matched normal adjacent tissue or tissue from autopsy. Reverse transcription polymerase chain reaction was performed to evaluate BP1 expression. Statistical analysis was accomplished with SAS. RESULTS: Analysis of 46 invasive ductal breast tumors demonstrated BP1 expression in 80% of them, compared with a lack of expression in six normal breast tissues and low-level expression in one normal breast tissue. Remarkably, 100% of tumors that were negative for the estrogen receptor (ER) were BP1-positive, whereas 73% of ER-positive tumors expressed BP1 (P = 0.03). BP1 expression was also associated with race: 89% of the tumors of African American women were BP1-positive, whereas 57% of those from Caucasian women expressed BP1 (P = 0.04). However, there was no significant difference in BP1 expression between grades I, II, and III tumors. Interestingly, BP1 mRNA expression was correlated with the ability of malignant cell lines to cause breast cancer in mice. CONCLUSION: Because BP1 is expressed abnormally in breast tumors, it could provide a useful target for therapy, particularly in patients with ER-negative tumors. The frequent expression of BP1 in all tumor grades suggests that activation of BP1 is an early event

    The relationship among oceanography, prey fields, and beaked whale foraging habitat in the Tongue of the Ocean

    Get PDF
    This article is distributed under the terms of the Creative Commons CC0 public domain dedication. The definitive version was published in PLoS One 6 (2011): e19269, doi:10.1371/journal.pone.0019269.Beaked whales, specifically Blainville's (Mesoplodon densirostris) and Cuvier's (Ziphius cavirostris), are known to feed in the Tongue of the Ocean, Bahamas. These whales can be reliably detected and often localized within the Atlantic Undersea Test and Evaluation Center (AUTEC) acoustic sensor system. The AUTEC range is a regularly spaced bottom mounted hydrophone array covering >350 nm2 providing a valuable network to record anthropogenic noise and marine mammal vocalizations. Assessments of the potential risks of noise exposure to beaked whales have historically occurred in the absence of information about the physical and biological environments in which these animals are distributed. In the fall of 2008, we used a downward looking 38 kHz SIMRAD EK60 echosounder to measure prey scattering layers concurrent with fine scale turbulence measurements from an autonomous turbulence profiler. Using an 8 km, 4-leaf clover sampling pattern, we completed a total of 7.5 repeat surveys with concurrently measured physical and biological oceanographic parameters, so as to examine the spatiotemporal scales and relationships among turbulence levels, biological scattering layers, and beaked whale foraging activity. We found a strong correlation among increased prey density and ocean vertical structure relative to increased click densities. Understanding the habitats of these whales and their utilization patterns will improve future models of beaked whale habitat as well as allowing more comprehensive assessments of exposure risk to anthropogenic sound.The data collection and analysis was funded by the Office of Naval Research as N00014-08-1-1162

    Secretion of Novel SEL1L Endogenous Variants Is Promoted by ER Stress/UPR via Endosomes and Shed Vesicles in Human Cancer Cells

    Get PDF
    We describe here two novel endogenous variants of the human endoplasmic reticulum (ER) cargo receptor SEL1LA, designated p38 and p28. Biochemical and RNA interference studies in tumorigenic and non-tumorigenic cells indicate that p38 and p28 are N-terminal, ER-anchorless and more stable relative to the canonical transmembrane SEL1LA. P38 is expressed and constitutively secreted, with increase after ER stress, in the KMS11 myeloma line and in the breast cancer lines MCF7 and SKBr3, but not in the non-tumorigenic breast epithelial MCF10A line. P28 is detected only in the poorly differentiated SKBr3 cell line, where it is secreted after ER stress. Consistently with the presence of p38 and p28 in culture media, morphological studies of SKBr3 and KMS11 cells detect N-terminal SEL1L immunolabeling in secretory/degradative compartments and extracellularly-released membrane vesicles. Our findings suggest that the two new SEL1L variants are engaged in endosomal trafficking and secretion via vesicles, which could contribute to relieve ER stress in tumorigenic cells. P38 and p28 could therefore be relevant as diagnostic markers and/or therapeutic targets in cancer

    Human Macrophages and Dendritic Cells Can Equally Present MART-1 Antigen to CD8+ T Cells after Phagocytosis of Gamma-Irradiated Melanoma Cells

    Get PDF
    Dendritic cells (DC) can achieve cross-presentation of naturally-occurring tumor-associated antigens after phagocytosis and processing of dying tumor cells. They have been used in different clinical settings to vaccinate cancer patients. We have previously used gamma-irradiated MART-1 expressing melanoma cells as a source of antigens to vaccinate melanoma patients by injecting irradiated cells with BCG and GM-CSF or to load immature DC and use them as a vaccine. Other clinical trials have used IFN-gamma activated macrophage killer cells (MAK) to treat cancer patients. However, the clinical use of MAK has been based on their direct tumoricidal activity rather than on their ability to act as antigen-presenting cells to stimulate an adaptive antitumor response. Thus, in the present work, we compared the fate of MART-1 after phagocytosis of gamma-irradiated cells by clinical grade DC or MAK as well as the ability of these cells to cross present MART-1 to CD8+ T cells. Using a high affinity antibody against MART-1, 2A9, which specifically stains melanoma tumors, melanoma cell lines and normal melanocytes, the expression level of MART-1 in melanoma cell lines could be related to their ability to stimulate IFN-gamma production by a MART-1 specific HLA-A*0201-restricted CD8+ T cell clone. Confocal microscopy with Alexa Fluor®647-labelled 2A9 also showed that MART-1 could be detected in tumor cells attached and/or fused to phagocytes and even inside these cells as early as 1 h and up to 24 h or 48 h after initiation of co-cultures between gamma-irradiated melanoma cells and MAK or DC, respectively. Interestingly, MART-1 was cross-presented to MART-1 specific T cells by both MAK and DC co-cultured with melanoma gamma-irradiated cells for different time-points. Thus, naturally occurring MART-1 melanoma antigen can be taken-up from dying melanoma cells into DC or MAK and both cell types can induce specific CD8+ T cell cross-presentation thereafter

    Selective Survival and Maturation of Adult-Born Dentate Granule Cells Expressing the Immediate Early Gene Arc/Arg3.1

    Get PDF
    Progenitor cells in the adult dentate gyrus provide a constant supply of neuronal precursors, yet only a small fraction of these cells survive and develop into mature dentate granule cells (DGCs). A major challenge of current research is thus to understand the stringent selection process that governs the maturation and functional integration of adult-born DGCs. In mature DGCs, high-frequency stimulation (HFS) of the perforant path input elicits robust expression of the immediate early gene Arc/Arg3.1, trafficking of its mRNA to dendrites, and local synthesis of the protein necessary for consolidation of long-term potentiation (LTP). Given the synaptic commitment inherent in LTP consolidation, we considered that HFS-evoked expression of Arc could be used to timemap the functional integration of newborn DGCs. Dividing cells were birthmarked by BrdU-labeling at 1, 7, 14, 21, or 28 days prior to induction of LTP and expression of Arc was examined by confocal microscopy. Contrary to expectation, LTP did not induce Arc expression in newborn cells at any age, suggesting they might be refractory to synaptically-evoked Arc expression for at least one month. Importantly, however, spontaneous expression of Arc was detected in BrdU-labeled cells and strongly associated with the survival and maturation of NeuN-positive DGCs. Moreover, Arc expression at the earliest ages (1 and 7 days), clearly precedes the formation of glutamatergic synapses on new neurons. These results suggest an unexpected early role for Arc in adult-born DGCs, distinct from its functions in LTP, LTD, and homeostatic synaptic plasticity

    Systems Biology by the Rules: Hybrid Intelligent Systems for Pathway Modeling and Discovery

    Get PDF
    Background: Expert knowledge in journal articles is an important source of data for reconstructing biological pathways and creating new hypotheses. An important need for medical research is to integrate this data with high throughput sources to build useful models that span several scales. Researchers traditionally use mental models of pathways to integrate information and development new hypotheses. Unfortunately, the amount of information is often overwhelming and these are inadequate for predicting the dynamic response of complex pathways. Hierarchical computational models that allow exploration of semi-quantitative dynamics are useful systems biology tools for theoreticians, experimentalists and clinicians and may provide a means for cross-communication. Results: A novel approach for biological pathway modeling based on hybrid intelligent systems or soft computing technologies is presented here. Intelligent hybrid systems, which refers to several related computing methods such as fuzzy logic, neural nets, genetic algorithms, and statistical analysis, has become ubiquitous in engineering applications for complex control system modeling and design. Biological pathways may be considered to be complex control systems, which medicine tries to manipulate to achieve desired results. Thus, hybrid intelligent systems may provide a useful tool for modeling biological system dynamics and computational exploration of new drug targets. A new modeling approach based on these methods is presented in the context of hedgehog regulation of the cell cycle in granule cells. Code and input files can be found at the Bionet website: www.chip.ord/~wbosl/Software/Bionet. Conclusion: This paper presents the algorithmic methods needed for modeling complicated biochemical dynamics using rule-based models to represent expert knowledge in the context of cell cycle regulation and tumor growth. A notable feature of this modeling approach is that it allows biologists to build complex models from their knowledge base without the need to translate that knowledge into mathematical form. Dynamics on several levels, from molecular pathways to tissue growth, are seamlessly integrated. A number of common network motifs are examined and used to build a model of hedgehog regulation of the cell cycle in cerebellar neurons, which is believed to play a key role in the etiology of medulloblastoma, a devastating childhood brain cancer

    Rule-Based Cell Systems Model of Aging using Feedback Loop Motifs Mediated by Stress Responses

    Get PDF
    Investigating the complex systems dynamics of the aging process requires integration of a broad range of cellular processes describing damage and functional decline co-existing with adaptive and protective regulatory mechanisms. We evolve an integrated generic cell network to represent the connectivity of key cellular mechanisms structured into positive and negative feedback loop motifs centrally important for aging. The conceptual network is casted into a fuzzy-logic, hybrid-intelligent framework based on interaction rules assembled from a priori knowledge. Based upon a classical homeostatic representation of cellular energy metabolism, we first demonstrate how positive-feedback loops accelerate damage and decline consistent with a vicious cycle. This model is iteratively extended towards an adaptive response model by incorporating protective negative-feedback loop circuits. Time-lapse simulations of the adaptive response model uncover how transcriptional and translational changes, mediated by stress sensors NF-κB and mTOR, counteract accumulating damage and dysfunction by modulating mitochondrial respiration, metabolic fluxes, biosynthesis, and autophagy, crucial for cellular survival. The model allows consideration of lifespan optimization scenarios with respect to fitness criteria using a sensitivity analysis. Our work establishes a novel extendable and scalable computational approach capable to connect tractable molecular mechanisms with cellular network dynamics underlying the emerging aging phenotype
    • …
    corecore