257 research outputs found

    Intrathecal antibody production against Epstein-Barr and other neurotropic viruses in pediatric and adult onset multiple sclerosis

    Get PDF
    Epstein-Barr virus (EBV) has been implicated in the pathogenesis of multiple sclerosis (MS). Recent reports proposed an increased EBV-targeted humoral immune response in MS, which appears to be more pronounced in pediatric patients. However, little is known about the CNS-derived antibody production against EBV in patients with MS. The objective of this study was to assess the frequency and intensity of intrathecal antibody production against EBV as compared to other neurotropic viruses in pediatric and adult onset MS. In cohorts of 43 childhood, 50 adult onset MS patients, 20 children and 12 adults with other CNS disorders, paired CSF and serum samples were studied. Frequency and intensity of intrathecal antibody production against EBV as compared to measles, rubella, varicella zoster (VZV) and herpes simplex virus (HSV) were analyzed by determination of virus-specific CSF-to-serum Antibody Indices (AI). Intrathecally synthesized EBV antibodies were detectable in 26% pediatric and 10% adult onset MS patients, compared to frequencies ranging in both groups from 10 to 60% for the other viruses. Median AIs for EBV were lower than those for all other viruses, with more than twofold higher median AI for measles, rubella and VZV. The EBV-targeted humoral immune response in the CNS is only part of the intrathecal polyspecific antibody production in MS, directed against various neurotropic viruses. Our results do not rule out the possibility that EBV is involved in the pathogenesis of MS by triggering diverse cellular immune mechanisms, but they argue against a direct pathogenic role of EBV-targeted humoral immune response within the CNS

    Gammaherpesvirus Latency Accentuates EAE Pathogenesis: Relevance to Epstein-Barr Virus and Multiple Sclerosis

    Get PDF
    Epstein-Barr virus (EBV) has been identified as a putative environmental trigger of multiple sclerosis (MS), yet EBV's role in MS remains elusive. We utilized murine gamma herpesvirus 68 (γHV-68), the murine homolog to EBV, to examine how infection by a virus like EBV could enhance CNS autoimmunity. Mice latently infected with γHV-68 developed more severe EAE including heightened paralysis and mortality. Similar to MS, γHV-68EAE mice developed lesions composed of CD4 and CD8 T cells, macrophages and loss of myelin in the brain and spinal cord. Further, T cells from the CNS of γHV-68 EAE mice were primarily Th1, producing heightened levels of IFN-γ and T-bet accompanied by IL-17 suppression, whereas a Th17 response was observed in uninfected EAE mice. Clearly, γHV-68 latency polarizes the adaptive immune response, directs a heightened CNS pathology following EAE induction reminiscent of human MS and portrays a novel mechanism by which EBV likely influences MS and other autoimmune diseases

    Combination CTLA-4 Blockade and 4-1BB Activation Enhances Tumor Rejection by Increasing T-Cell Infiltration, Proliferation, and Cytokine Production

    Get PDF
    BACKGROUND: The co-inhibitory receptor Cytotoxic T-Lymphocyte Antigen 4 (CTLA-4) attenuates immune responses and prevent autoimmunity, however, tumors exploit this pathway to evade the host T-cell response. The T-cell co-stimulatory receptor 4-1BB is transiently upregulated on T-cells following activation and increases their proliferation and inflammatory cytokine production when engaged. Antibodies which block CTLA-4 or which activate 4-1BB can promote the rejection of some murine tumors, but fail to cure poorly immunogenic tumors like B16 melanoma as single agents.METHODOLOGY/PRINCIPAL FINDINGS: We find that combining ?CTLA-4 and ?4-1BB antibodies in the context of a Flt3-ligand, but not a GM-CSF, based B16 melanoma vaccine promoted synergistic levels of tumor rejection. 4-1BB activation elicited strong infiltration of CD8+ T-cells into the tumor and drove the proliferation of these cells, while CTLA-4 blockade did the same for CD4+ effector T-cells. Anti-4-1BB also depressed regulatory T-cell infiltration of tumors. 4-1BB activation strongly stimulated inflammatory cytokine production in the vaccine and tumor draining lymph nodes and in the tumor itself. The addition of CTLA-4 blockade further increased IFN-? production from CD4+ effector T-cells in the vaccine draining node and the tumor. Anti 4-1BB treatment, with or without CTLA-4 blockade, induced approximately 75% of CD8+ and 45% of CD4+ effector T-cells in the tumor to express the killer cell lectin-like receptor G1 (KLRG1). Tumors treated with combination antibody therapy showed 1.7-fold greater infiltration by these KLRG1+CD4+ effector T-cells than did those treated with ?4-1BB alone.CONCLUSIONS/SIGNIFICANCE: This study shows that combining T-cell co-inhibitory blockade with ?CTLA-4 and active co-stimulation with ?4-1BB promotes rejection of B16 melanoma in the context of a suitable vaccine. In addition, we identify KLRG1 as a useful marker for monitoring the anti-tumor immune response elicited by this therapy. These findings should aid in the design of future trials for the immunotherapy of melanoma

    Pyelonephritis in slaughter pigs and sows: Morphological characterization and aspects of pathogenesis and aetiology

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Pyelonephritis is a serious disease in pig production that needs to be further studied. The purpose of this study was to describe the morphology, investigate the pathogenesis, and evaluate the aetiological role of <it>Escherichia coli </it>in pyelonephritis in slaughtered pigs by concurrent bacteriological, gross and histopathological examinations.</p> <p>Methods</p> <p>From Danish abattoirs, kidneys and corresponding lymph nodes from 22 slaughtered finishing pigs and 26 slaughtered sows with pyelonephritis were collected and evaluated by bacteriology and pathology. Based on gross lesions, each kidney (lesion) was grouped as acute, chronic, chronic active, or normal and their histological inflammatory stage was determined as normal (0), acute (1), sub-acute (2), chronic active (3), or chronic (4). Immunohistochemical identification of neutrophils, macrophages, T-lymphocytes, B-lymphocytes, plasma cells, <it>E. coli </it>and Tamm-Horsfall protein (THP) in renal sections was performed. The number of <it>E. coli </it>and the proportion of immunohistochemically visualized leukocytes out of the total number of infiltrating leukocytes were scored semi-quantitatively.</p> <p>Results</p> <p>Lesions in finishing pigs and sows were similar. Macroscopically, multiple unevenly distributed foci of inflammation mostly affecting the renal poles were observed. Histologically, tubulointerstitial infiltration with neutrophils and mononuclear cells and tubular destruction was the main findings. The significant highest scores of L1 antigen<sup>+ </sup>neutrophils were in inflammatory stage 1 while the significant highest scores of CD79αcy<sup>+ </sup>B-lymphocytes, IgG<sup>+ </sup>and IgA<sup>+ </sup>plasma cells were in stage 3 or 4. Neutrophils were the dominant leukocytes in stage 1 while CD3ε<sup>+ </sup>T-lymphocytes dominated in stage 2, 3 and 4. Interstitially THP was seen in 82% and 98% of kidneys with pyelonephritis from finishing pigs and sows, respectively. <it>E. coli </it>was demonstrated in monoculture and/or identified by immunohistochemistry in relation to inflammation in four kidneys from finishing pigs and in 34 kidneys from sows.</p> <p>Conclusions</p> <p><it>E. coli </it>played a significant role in the aetiology of pyelonephritis. Neutrophils were involved in the first line of defence. CD3ε<sup>+ </sup>T-lymphocytes were involved in both the acute and chronic inflammatory response while a humoral immune response was most pronounced in later inflammatory stages. The observed renal lesions correspond with an ascending bacterial infection with presence of intra-renal reflux.</p

    Increased CD8+ T cell responses to apoptotic T cell-associated antigens in multiple sclerosis.

    Get PDF
    BACKGROUND: Here, we evaluated the hypothesis that CD8(+) T cell responses to caspase-cleaved antigens derived from effector T cells undergoing apoptosis, may contribute to multiple sclerosis (MS) immunopathology. METHODS: The percentage of autoreactive CD8(+) T effector cells specific for various apoptotic T cell-associated self-epitopes (apoptotic epitopes) were detected in the peripheral blood and cerebrospinal fluid (CSF) by both enzyme-linked immunospot and dextramers of class I molecules complexed with relevant apoptotic epitopes. Moreover, the capacity of dextramer(+) CD8(+) T cells to produce interferon (IFN)-γ and/or interleukin (IL)-17 in response to the relevant apoptotic epitopes was evaluated by the intracellular cytokine staining. Cross-presentation assay of apoptotic T cells by dendritic cells was also evaluated ex vivo. RESULTS: We found that polyfunctional (IFN-γ and/or IL-17 producing) autoreactive CD8(+) T cells specific for apoptotic epitopes were represented in MS patients with frequencies significantly higher than in healthy donors. These autoreactive CD8(+) T cells with a strong potential to produce IFN-γ or IL-17 in response to the relevant apoptotic epitopes were significantly accumulated in the CSF from the same patients. In addition, the frequencies of these autoreactive CD8(+) T cells correlated with the disease disability. Cross-presentation assay revealed that caspase-cleaved cellular proteins are required to activate apoptotic epitope-specific CD8(+) T cells ex vivo. CONCLUSION: Taken together, these data indicate that apoptotic epitope-specific CD8(+) T cells with strong inflammatory potential are recruited at the level of the inflammatory site, where they may be involved in MS immunopathology through the production of high levels of inflammatory cytokines

    Decreased CD8+ T cell response to Epstein-Barr virus infected B cells in multiple sclerosis is not due to decreased HLA class I expression on B cells or monocytes

    Get PDF
    Background: Patients with multiple sclerosis (MS) have a decreased frequency of CD8(+) T cells reactive to their own Epstein-Barr virus (EBV) infected B cells. We have proposed that this might predispose to the development of MS by allowing EBV-infected autoreactive B cells to accumulate in the central nervous system. The decreased CD8(+) T cell response to EBV results from a general CD8(+) T cell deficiency and also a decreased proportion of EBV-specific T cells within the total CD8(+) T cell population. Because decreased HLA class I expression on monocytes and B cells has been reported in MS and could influence the generation and effector function of EBV-specific CD8(+) T cells, the present study was undertaken to measure the expression of HLA molecules on B cells and monocytes in patients with MS

    Overexpression of DNA Polymerase Zeta Reduces the Mitochondrial Mutability Caused by Pathological Mutations in DNA Polymerase Gamma in Yeast

    Get PDF
    In yeast, DNA polymerase zeta (Rev3 and Rev7) and Rev1, involved in the error-prone translesion synthesis during replication of nuclear DNA, localize also in mitochondria. We show that overexpression of Rev3 reduced the mtDNA extended mutability caused by a subclass of pathological mutations in Mip1, the yeast mitochondrial DNA polymerase orthologous to human Pol gamma. This beneficial effect was synergistic with the effect achieved by increasing the dNTPs pools. Since overexpression of Rev3 is detrimental for nuclear DNA mutability, we constructed a mutant Rev3 isoform unable to migrate into the nucleus: its overexpression reduced mtDNA mutability without increasing the nuclear one
    corecore