30 research outputs found

    P3HT-Based Solar Cells: Structural Properties and Photovoltaic Performance

    Full text link
    Each year we are bombarded with B.Sc. and Ph.D. applications from students that want to improve the world. They have learned that their future depends on changing the type of fuel we use and that solar energy is our future. The hope and energy of these young people will transform future energy technologies, but it will not happen quickly. Organic photovoltaic devices are easy to sketch, but the materials, processing steps, and ways of measuring the properties of the materials are very complicated. It is not trivial to make a systematic measurement that will change the way other research groups think or practice. In approaching this chapter, we thought about what a new researcher would need to know about organic photovoltaic devices and materials in order to have a good start in the subject. Then, we simplified that to focus on what a new researcher would need to know about poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends (P3HT: PCBM) to make research progress with these materials. This chapter is by no means authoritative or a compendium of all things on P3HT:PCBM. We have selected to explain how the sample fabrication techniques lead to control of morphology and structural features and how these morphological features have specific optical and electronic consequences for organic photovoltaic device applications

    Structure Study of Solution Formed Poly(3-hexylthiophene) Nanofibers

    No full text

    P3HT:PCBM bulk-heterojunctions: Observing interfacial and charge transfer states with surface photovoltage spectroscopy

    No full text
    Surface photovoltage (SPV) spectra are reported for separate films of (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) and for regioregular and regiorandom poly(3-hexylthiophene) (P3HT):PCBM bulk heterojunctions, as a function of wavelength, film thickness, thermal annealing, and substrate. In PCBM films, two photovoltage features are observed at 1.1-1.4 eV (F1) and 1.4-2.3 eV (F2), which are assigned to excitation of charge transfer states at the interface (F1) and in the bulk (F2) of the film. In BHJ films, five different photovoltage features are observed at 0.75-0.9 eV (F1), 0.9-1.3 eV (F2), 1.3-1.8 eV (F3), 1.8-2.0 eV (F4), and 2.0-2.4 eV (F5). This data can be analyzed on the basis of optical absorbance and fluorescence spectra of the films, and using SPV spectra for PCBM and P3HT only films, and for a BHJ film containing P3HT nanofibers for comparison. SPV features are assigned to states at the polymer-substrate interface (F1 and F2), the P3HT:PCBM charge transfer state (F3), the self-ionized (CT) state of P3HT (F4), and the band gap transition of P3HT (F5). This interpretation is also consistent with molecular orbital energy diagrams and electron microscopy-derived topological maps of the films. Photovoltage sign and substrate dependence can be understood with the depleted semiconductor model. Features F1-4 are caused by polarization of electrostatically bound charge pairs by the built-in electric field at the substrate-BHJ interface, whereas F5 is due to transport of free charge carriers through the film and through the substrate film interface. This work will promote the understanding of photochemical charge generation and transport in organic photovoltaic films. © 2014 American Chemical Society
    corecore