46 research outputs found

    Nodes of Ranvier and Paranodes in Chronic Acquired Neuropathies

    Get PDF
    Chronic acquired neuropathies of unknown origin are classified as chronic inflammatory demyelinating polyneuropathies (CIDP) and chronic idiopathic axonal polyneuropathies (CIAP). The diagnosis can be very difficult, although it has important therapeutic implications since CIDP can be improved by immunomodulating treatment. The aim of this study was to examine the possible abnormalities of nodal and paranodal regions in these two types of neuropathies. Longitudinal sections of superficial peroneal nerves were obtained from biopsy material from 12 patients with CIDP and 10 patients with CIAP and studied by immunofluorescence and in some cases electron microscopy. Electron microscopy revealed multiple alterations in the nodal and paranodal regions which predominated in Schwann cells in CIDP and in axons in CIAP. In CIDP paranodin/Caspr immunofluorescence was more widespread than in control nerves, extending along the axon in internodes where it appeared intense. Nodal channels Nav and KCNQ2 were less altered but were also detected in the internodes. In CIAP paranodes, paranodin labeling was irregular and/or decreased. To test the consequences of acquired primary Schwann cells alteration on axonal proteins, we used a mouse model based on induced deletion of the transcription factor Krox-20 gene. In the demyelinated sciatic nerves of these mice we observed alterations similar to those found in CIDP by immunofluorescence, and immunoblotting demonstrated increased levels of paranodin. Finally we examined whether the alterations in paranodin immunoreactivity could have a diagnosis value. In a sample of 16 biopsies, the study of paranodin immunofluorescence by blind evaluators led to correct diagnosis in 70±4% of the cases. This study characterizes for the first time the abnormalities of nodes of Ranvier in CIAP and CIDP, and the altered expression and distribution of nodal and paranodal proteins. Marked differences were observed between CIDP and CIAP and the alterations in paranodin immunofluorescence may be an interesting tool for their differential diagnosis

    The node of Ranvier in CNS pathology

    Get PDF

    Protein tyrosine phosphatases in glioma biology

    Get PDF
    Gliomas are a diverse group of brain tumors of glial origin. Most are characterized by diffuse infiltrative growth in the surrounding brain. In combination with their refractive nature to chemotherapy this makes it almost impossible to cure patients using combinations of conventional therapeutic strategies. The drastically increased knowledge about the molecular underpinnings of gliomas during the last decade has elicited high expectations for a more rational and effective therapy for these tumors. Most studies on the molecular pathways involved in glioma biology thus far had a strong focus on growth factor receptor protein tyrosine kinase (PTK) and phosphatidylinositol phosphatase signaling pathways. Except for the tumor suppressor PTEN, much less attention has been paid to the PTK counterparts, the protein tyrosine phosphatase (PTP) superfamily, in gliomas. PTPs are instrumental in the reversible phosphorylation of tyrosine residues and have emerged as important regulators of signaling pathways that are linked to various developmental and disease-related processes. Here, we provide an overview of the current knowledge on PTP involvement in gliomagenesis. So far, the data point to the potential implication of receptor-type (RPTPδ, DEP1, RPTPμ, RPTPζ) and intracellular (PTP1B, TCPTP, SHP2, PTPN13) classical PTPs, dual-specific PTPs (MKP-1, VHP, PRL-3, KAP, PTEN) and the CDC25B and CDC25C PTPs in glioma biology. Like PTKs, these PTPs may represent promising targets for the development of novel diagnostic and therapeutic strategies in the treatment of high-grade gliomas

    The node of Ranvier in CNS pathology.

    Get PDF
    Healthy nodes of Ranvier are crucial for action potential propagation along myelinated axons, both in the central and in the peripheral nervous system. Surprisingly, the node of Ranvier has often been neglected when describing CNS disorders, with most pathologies classified simply as being due to neuronal defects in the grey matter or due to oligodendrocyte damage in the white matter. However, recent studies have highlighted changes that occur in pathological conditions at the node of Ranvier, and at the associated paranodal and juxtaparanodal regions where neurons and myelinating glial cells interact. Lengthening of the node of Ranvier, failure of the electrically resistive seal between the myelin and the axon at the paranode, and retraction of myelin to expose voltage-gated K(+) channels in the juxtaparanode, may contribute to altering the function of myelinated axons in a wide range of diseases, including stroke, spinal cord injury and multiple sclerosis. Here, we review the principles by which the node of Ranvier operates and its molecular structure, and thus explain how defects at the node and paranode contribute to neurological disorders
    corecore