422 research outputs found

    Cerebral involvement in a patient with Goodpasture's disease due to shortened induction therapy: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Goodpasture's disease is a rare immunological disease with formation of pathognomonic antibodies against renal and pulmonary basement membranes. Cerebral involvement has been reported in several cases in the literature, yet the pathogenetic mechanism is not entirely clear.</p> <p>Case presentation</p> <p>A 21-year-old Caucasian man with Goodpasture's disease and end-stage renal disease presented with two generalized seizures after a period of mild cognitive disturbance. Blood pressure and routine laboratory tests did not exceed the patient's usual values, and examination of cerebrospinal fluid was unremarkable. Cerebral magnetic resonance imaging (MRI) revealed multiple cortical and subcortical lesions on fluid-attenuated inversion recovery sequences. Since antiglomerular basement membrane antibodies were found to be positive with high titers, plasmapheresis was started. In addition, cyclophosphamide pulse therapy was given on day 13. Encephalopathy and MRI lesions disappeared during this therapy, and antiglomerular basement membrane antibodies were significantly reduced. Previous immunosuppressive therapy was performed without corticosteroids and terminated early after 3 months.</p> <p>The differential diagnostic considerations were cerebral vasculitis and posterior reversible encephalopathy syndrome. Vasculitis could be seen as an extrarenal manifestation of the underlying disease. Posterior reversible encephalopathy syndrome, on the other hand, can be triggered by immunosuppressive therapy and may appear without a hypertensive crisis.</p> <p>Conclusion</p> <p>A combination of central nervous system symptoms with a positive antiglomerular basement membrane test in a patient with Goodpasture's disease should immediately be treated as an acute exacerbation of the disease with likely cross-reactivity of antibodies with the choroid plexus. In our patient, a discontinuous strategy of immunosuppressive therapy may have favored recurrence of Goodpasture's disease.</p

    The association of HLA-DQB1, -DQA1 and -DPB1 alleles with anti- glomerular basement membrane (GBM) disease in Chinese patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Human leukocyte antigen (HLA) alleles are associated with many autoimmune diseases, including anti-glomerular basement membrane (GBM) disease. In our previous study, it was demonstrated that HLA-DRB1*1501 was strongly associated with anti-GBM disease in Chinese. However, the association of anti-GBM disease and other HLA class II genes, including HLA-DQB1, -DQA1,-DPB1 alleles, has rarely been investigated in Asian, especially Chinese patients. The present study further analyzed the association between anti-GBM disease and HLA-DQB1, -DQA1, and -DPB1 genes. Apart from this, we tried to locate the potential risk amino acid residues of anti-GBM disease.</p> <p>Methods</p> <p>This study included 44 Chinese patients with anti-GBM disease and 200 healthy controls. The clinical and pathological data of the patients were collected and analyzed. Typing of HLA-DQB1, -DQA1 and -DPB1 alleles were performed by bi-directional sequencing of exon 2 using the SeCoreTM Sequencing Kits.</p> <p>Results</p> <p>Compared with normal controls, the prevalence of HLA-DPB1*0401 was significantly lower in patients with anti-GBM disease (3/88 vs. 74/400, p = 4.4 × 10<sup>-4</sup>, pc = 0.039). Comparing with normal controls, the combination of presence of DRB1*1501 and absence of DPB1*0401 was significantly prominent among anti-GBM patients (p = 2.0 × 10<sup>-12</sup>, pc = 1.7 × 10<sup>-10</sup>).</p> <p>Conclusions</p> <p>HLA-DPB1*0401 might be a protective allele to anti-GBM disease in Chinese patients. The combined presence of DRB1*1501 and absence of DPB1*0401 might have an even higher risk to anti-GBM disease than HLA-DRB1*1501 alone.</p

    How Accessible Was Information about H1N1 Flu? Literacy Assessments of CDC Guidance Documents for Different Audiences

    Get PDF
    We assessed the literacy level and readability of online communications about H1N1/09 influenza issued by the Centers for Disease Control and Prevention (CDC) during the first month of outbreak. Documents were classified as targeting one of six audiences ranging in technical expertise. Flesch-Kincaid (FK) measure assessed literacy level for each group of documents. ANOVA models tested for differences in FK scores across target audiences and over time. Readability was assessed for documents targeting non-technical audiences using the Suitability Assessment of Materials (SAM). Overall, there was a main-effect by audience, F(5, 82) = 29.72, P<.001, but FK scores did not vary over time, F(2, 82) = .34, P>.05. A time-by-audience interaction was significant, F(10, 82) = 2.11, P<.05. Documents targeting non-technical audiences were found to be text-heavy and densely-formatted. The vocabulary and writing style were found to adequately reflect audience needs. The reading level of CDC guidance documents about H1N1/09 influenza varied appropriately according to the intended audience; sub-optimal formatting and layout may have rendered some text difficult to comprehend

    Economic Impact of Dengue Illness and the Cost-Effectiveness of Future Vaccination Programs in Singapore

    Get PDF
    Dengue illness is a tropical disease transmitted by mosquitoes that threatens more than one third of the worldwide population. Dengue has important economic consequences because of the burden to hospitals, work absenteeism and risk of death of symptomatic cases. Governments attempt to reduce the disease burden using costly mosquito control strategies such as habitat reduction and spraying insecticide. Despite such efforts, the number of cases remains high. Dengue vaccines are expected to be available in the near future and there is an urgent need to evaluate their cost-effectiveness, i.e. whether their cost will be justified by the reduction in disease burden they bring. For such an evaluation, we estimated the economic impacts of dengue in Singapore and the expected vaccine costs for different prices. In this way we estimated price thresholds for which vaccination is not cost-effective. This research provides useful estimates that will contribute to informed decisions regarding the adoption of dengue vaccination programs

    A Densely Interconnected Genome-Wide Network of MicroRNAs and Oncogenic Pathways Revealed Using Gene Expression Signatures

    Get PDF
    MicroRNAs (miRNAs) are important components of cellular signaling pathways, acting either as pathway regulators or pathway targets. Currently, only a limited number of miRNAs have been functionally linked to specific signaling pathways. Here, we explored if gene expression signatures could be used to represent miRNA activities and integrated with genomic signatures of oncogenic pathway activity to identify connections between miRNAs and oncogenic pathways on a high-throughput, genome-wide scale. Mapping >300 gene expression signatures to >700 primary tumor profiles, we constructed a genome-wide miRNA–pathway network predicting the associations of 276 human miRNAs to 26 oncogenic pathways. The miRNA–pathway network confirmed a host of previously reported miRNA/pathway associations and uncovered several novel associations that were subsequently experimentally validated. Globally, the miRNA–pathway network demonstrates a small-world, but not scale-free, organization characterized by multiple distinct, tightly knit modules each exhibiting a high density of connections. However, unlike genetic or metabolic networks typified by only a few highly connected nodes (“hubs”), most nodes in the miRNA–pathway network are highly connected. Sequence-based computational analysis confirmed that highly-interconnected miRNAs are likely to be regulated by common pathways to target similar sets of downstream genes, suggesting a pervasive and high level of functional redundancy among coexpressed miRNAs. We conclude that gene expression signatures can be used as surrogates of miRNA activity. Our strategy facilitates the task of discovering novel miRNA–pathway connections, since gene expression data for multiple normal and disease conditions are abundantly available

    Aldo-keto reductases are biomarkers of NRF2 activity and are co-ordinately overexpressed in non-small cell lung cancer

    Get PDF
    BACKGROUND: Although the nuclear factor-erythroid 2-related factor 2 (NRF2) pathway is one of the most frequently dysregulated in cancer, it is not clear whether mutational status is a good predictor of NRF2 activity. Here we utilise four members of the aldo-keto reductase (AKR) superfamily as biomarkers to address this question. METHODS: Twenty-three cell lines of diverse origin and NRF2-pathway mutational status were used to determine the relationship between AKR expression and NRF2 activity. AKR expression was evaluated in lung cancer biopsies and Cancer Genome Atlas (TCGA) and Oncomine data sets. RESULTS: AKRs were expressed at a high basal level in cell lines carrying mutations in the NRF2 pathway. In non-mutant cell lines, co-ordinate induction of AKRs was consistently observed following activation of NRF2. Immunohistochemical analysis of lung tumour biopsies and interrogation of TCGA data revealed that AKRs are enriched in both squamous cell carcinomas (SCCs) and adenocarcinomas that contain somatic alterations in the NRF2 pathway but, in the case of SCC, AKRs were also enriched in most other tumours. CONCLUSIONS: An AKR biomarker panel can be used to determine NRF2 status in tumours. Hyperactivation of the NRF2 pathway is far more prevalent in lung SCC than previously predicted by genomic analyses

    Microenvironmental Influence on Pre-Clinical Activity of Polo-Like Kinase Inhibition in Multiple Myeloma: Implications for Clinical Translation

    Get PDF
    Polo-like kinases (PLKs) play an important role in cell cycle progression, checkpoint control and mitosis. The high mitotic index and chromosomal instability of advanced cancers suggest that PLK inhibitors may be an attractive therapeutic option for presently incurable advanced neoplasias with systemic involvement, such as multiple myeloma (MM). We studied the PLK 1, 2, 3 inhibitor BI 2536 and observed potent (IC50<40 nM) and rapid (commitment to cell death <24 hrs) in vitro activity against MM cells in isolation, as well as in vivo activity against a traditional subcutaneous xenograft mouse model. Tumor cells in MM patients, however, don't exist in isolation, but reside in and interact with the bone microenvironment. Therefore conventional in vitro and in vivo preclinical assays don't take into account how interactions between MM cells and the bone microenvironment can potentially confer drug resistance. To probe this question, we performed tumor cell compartment-specific bioluminescence imaging assays to compare the preclinical anti-MM activity of BI 2536 in vitro in the presence vs. absence of stromal cells or osteoclasts. We observed that the presence of these bone marrow non-malignant cells led to decreased anti-MM activity of BI 2536. We further validated these results in an orthotopic in vivo mouse model of diffuse MM bone lesions where tumor cells interact with non-malignant cells of the bone microenvironment. We again observed that BI 2536 had decreased activity in this in vivo model of tumor-bone microenvironment interactions highlighting that, despite BI 2536's promising activity in conventional assays, its lack of activity in microenvironmental models raises concerns for its clinical development for MM. More broadly, preclinical drug testing in the absence of relevant tumor microenvironment interactions may overestimate potential clinical activity, thus explaining at least in part the gap between preclinical vs. clinical efficacy in MM and other cancers

    An internal ribosome entry site in the 5′ untranslated region of epidermal growth factor receptor allows hypoxic expression

    Get PDF
    The expression of epidermal growth factor receptor (EGFR/ERBB1/HER1) is implicated in the progress of numerous cancers, a feature that has been exploited in the development of EGFR antibodies and EGFR tyrosine kinase inhibitors as anti-cancer drugs. However, EGFR also has important normal cellular functions, leading to serious side effects when EGFR is inhibited. One damaging characteristic of many oncogenes is the ability to be expressed in the hypoxic conditions associated with the tumour interior. It has previously been demonstrated that expression of EGFR is maintained in hypoxic conditions via an unknown mechanism of translational control, despite global translation rates generally being attenuated under hypoxic conditions. In this report, we demonstrate that the human EGFR 5′ untranslated region (UTR) sequence can initiate the expression of a downstream open reading frame via an internal ribosome entry site (IRES). We show that this effect is not due to either cryptic promoter activity or splicing events. We have investigated the requirement of the EGFR IRES for eukaryotic initiation factor 4A (eIF4A), which is an RNA helicase responsible for processing RNA secondary structure as part of translation initiation. Treatment with hippuristanol (a potent inhibitor of eIF4A) caused a decrease in EGFR 5′ UTR-driven reporter activity and also a reduction in EGFR protein level. Importantly, we show that expression of a reporter gene under the control of the EGFR IRES is maintained under hypoxic conditions despite a fall in global translation rates

    A Simple, Inexpensive Device for Nucleic Acid Amplification without Electricity—Toward Instrument-Free Molecular Diagnostics in Low-Resource Settings

    Get PDF
    Molecular assays targeted to nucleic acid (NA) markers are becoming increasingly important to medical diagnostics. However, these are typically confined to wealthy, developed countries; or, to the national reference laboratories of developing-world countries. There are many infectious diseases that are endemic in low-resource settings (LRS) where the lack of simple, instrument-free, NA diagnostic tests is a critical barrier to timely treatment. One of the primary barriers to the practicality and availability of NA assays in LRS has been the complexity and power requirements of polymerase chain reaction (PCR) instrumentation (another is sample preparation).In this article, we investigate the hypothesis that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays. We assess the heater's equivalence to commercially available PCR instruments through the characterization of the temperature profiles produced, and a minimal method comparison. Versions of the prototype for several different isothermal techniques are presented.We demonstrate that an electricity-free heater based on exothermic chemical reactions and engineered phase change materials can successfully incubate isothermal NA amplification assays, and that the results of those assays are not significantly different from ones incubated in parallel in commercially available PCR instruments. These results clearly suggest the potential of the non-instrumented nucleic acid amplification (NINA) heater for molecular diagnostics in LRS. When combined with other innovations in development that eliminate power requirements for sample preparation, cold reagent storage, and readout, the NINA heater will comprise part of a kit that should enable electricity-free NA testing for many important analytes
    corecore