64 research outputs found

    Time domain algorithm for accelerated determination of the first order moment of photo current fluctuations in high speed laser Doppler perfusion imaging

    Get PDF
    Advances in optical array sensor technology allow for the real time acquisition of dynamic laser speckle patterns generated by tissue perfusion, which, in principle, allows for real time laser Doppler perfusion imaging (LDPI). Exploitation of these developments is enhanced with the introduction of faster algorithms to transform photo currents into perfusion estimates using the first moment of the power spectrum. A time domain (TD) algorithm is presented for determining the first-order spectral moment. Experiments are performed to compare this algorithm with the widely used Fast Fourier Transform (FFT). This study shows that the TD-algorithm is twice as fast as the FFT-algorithm without loss of accuracy. Compared to FFT, the TD-algorithm is efficient in terms of processor time, memory usage and data transport

    Review of laser speckle contrast techniques for visualizing tissue perfusion

    Get PDF
    When a diffuse object is illuminated with coherent laser light, the backscattered light will form an interference pattern on the detector. This pattern of bright and dark areas is called a speckle pattern. When there is movement in the object, the speckle pattern will change over time. Laser speckle contrast techniques use this change in speckle pattern to visualize tissue perfusion. We present and review the contribution of laser speckle contrast techniques to the field of perfusion visualization and discuss the development of the techniques

    Inside-Out Regulation of ICAM-1 Dynamics in TNF-α-Activated Endothelium

    Get PDF
    Background: During transendothelial migration, leukocytes use adhesion molecules, such as ICAM-1, to adhere to the endothelium. ICAM-1 is a dynamic molecule that is localized in the apical membrane of the endothelium and clusters upon binding to leukocytes. However, not much is known about the regulation of ICAM-1 clustering and whether membrane dynamics are linked to the ability of ICAM-1 to cluster and bind leukocyte integrins. Therefore, we studied the dynamics of endothelial ICAM-1 under non-clustered and clustered conditions. Principal Findings: Detailed scanning electron and fluorescent microscopy showed that the apical surface of endothelial cells constitutively forms small filopodia-like protrusions that are positive for ICAM-1 and freely move within the lateral plane of the membrane. Clustering of ICAM-1, using anti-ICAM-1 antibody-coated beads, efficiently and rapidly recruits ICAM-1. Using fluorescence recovery after photo-bleaching (FRAP), we found that clustering increased the immobile fraction of ICAM-1, compared to non-clustered ICAM-1. This shift required the intracellular portion of ICAM-1. Moreover, biochemical assays showed that ICAM-1 clustering recruited beta-actin and filamin. Cytochalasin B, which interferes with actin polymerization, delayed the clustering of ICAM-1. In addition, we could show that cytochalasin B decreased the immobile fraction of clustered ICAM-1-GFP, but had no effect on non-clustered ICAM-1. Also, the motor protein myosin-II is recruited to ICAM-1 adhesion sites and its inhibition increased the immobile fraction of both non-clustered and clustered ICAM-1. Finally, blocking Rac1 activation, the formation of lipid rafts, myosin-II activity or actin polymerization, but not Src, reduced the adhesive function of ICAM-1, tested under physiological flow conditions. Conclusions: Together, these findings indicate that ICAM-1 clustering is regulated in an inside-out fashion through the actin cytoskeleton. Overall, these data indicate that signaling events within the endothelium are required for efficient ICAM-1-mediated leukocyte adhesio

    Differentiated transplant derived airway epithelial cell cytokine secretion is not regulated by cyclosporine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>While lung transplantation is an increasingly utilized therapy for advanced lung diseases, chronic rejection in the form of Bronchiolitis Obliterans Syndrome (BOS) continues to result in significant allograft dysfunction and patient mortality. Despite correlation of clinical events with eventual development of BOS, the causative pathophysiology remains unknown. Airway epithelial cells within the region of inflammation and fibrosis associated with BOS may have a participatory role.</p> <p>Methods</p> <p>Transplant derived airway epithelial cells differentiated in air liquid interface culture were treated with IL-1β and/or cyclosporine, after which secretion of cytokines and growth factor and gene expression for markers of epithelial to mesenchymal transition were analyzed.</p> <p>Results</p> <p>Secretion of IL-6, IL-8, and TNF-α, but not TGF-β1, was increased by IL-1β stimulation. In contrast to previous studies using epithelial cells grown in submersion culture, treatment of differentiated cells in ALI culture with cyclosporine did not elicit cytokine or growth factor secretion, and did not alter IL-6, IL-8, or TNF-α production in response to IL-1β treatment. Neither IL-1β nor cyclosporine elicited expression of markers of the epithelial to mesenchymal transition E-cadherin, EDN-fibronectin, and α-smooth muscle actin.</p> <p>Conclusion</p> <p>Transplant derived differentiated airway epithelial cell IL-6, IL-8, and TNF-α secretion is not regulated by cyclosporine <it>in vitro</it>; these cells thus may participate in local inflammatory responses in the setting of immunosuppression. Further, treatment with IL-1β did not elicit gene expression of markers of epithelial to mesenchymal transition. These data present a model of differentiated airway epithelial cells that may be useful in understanding epithelial participation in airway inflammation and allograft rejection in lung transplantation.</p

    Characterization of Granulations of Calcium and Apatite in Serum as Pleomorphic Mineralo-Protein Complexes and as Precursors of Putative Nanobacteria

    Get PDF
    Calcium and apatite granulations are demonstrated here to form in both human and fetal bovine serum in response to the simple addition of either calcium or phosphate, or a combination of both. These granulations are shown to represent precipitating complexes of protein and hydroxyapatite (HAP) that display marked pleomorphism, appearing as round, laminated particles, spindles, and films. These same complexes can be found in normal untreated serum, albeit at much lower amounts, and appear to result from the progressive binding of serum proteins with apatite until reaching saturation, upon which the mineralo-protein complexes precipitate. Chemically and morphologically, these complexes are virtually identical to the so-called nanobacteria (NB) implicated in numerous diseases and considered unusual for their small size, pleomorphism, and the presence of HAP. Like NB, serum granulations can seed particles upon transfer to serum-free medium, and their main protein constituents include albumin, complement components 3 and 4A, fetuin-A, and apolipoproteins A1 and B100, as well as other calcium and apatite binding proteins found in the serum. However, these serum mineralo-protein complexes are formed from the direct chemical binding of inorganic and organic phases, bypassing the need for any biological processes, including the long cultivation in cell culture conditions deemed necessary for the demonstration of NB. Thus, these serum granulations may result from physiologically inherent processes that become amplified with calcium phosphate loading or when subjected to culturing in medium. They may be viewed as simple mineralo-protein complexes formed from the deployment of calcification-inhibitory pathways used by the body to cope with excess calcium phosphate so as to prevent unwarranted calcification. Rather than representing novel pathophysiological mechanisms or exotic lifeforms, these results indicate that the entities described earlier as NB most likely originate from calcium and apatite binding factors in the serum, presumably calcification inhibitors, that upon saturation, form seeds for HAP deposition and growth. These calcium granulations are similar to those found in organisms throughout nature and may represent the products of more general calcium regulation pathways involved in the control of calcium storage, retrieval, tissue deposition, and disposal

    The feeling of me feeling for you: Interoception, alexithymia and empathy in autism.

    Get PDF
    Following recent evidence for a link between interoception, emotion and empathy, we investigated relationships between these factors in Autism Spectrum Disorder (ASD). 26 adults with ASD and 26 healthy participants completed tasks measuring interoception, alexithymia and empathy. ASD participants with alexithymia demonstrated lower cognitive and affective empathy than ASD participants without alexithymia. ASD participants showed reduced interoceptive sensitivity (IS), and also reduced interoceptive awareness (IA). IA was correlated with empathy and alexithymia, but IS was related to neither. Alexithymia fulfilled a mediating role between IA and empathy. Our findings are suggestive of an alexithymic subgroup in ASD, with distinct interoceptive processing abilities, and have implications for diagnosis and interventions
    corecore