70 research outputs found

    In Vivo, Multimodal Imaging of B Cell Distribution and Response to Antibody Immunotherapy in Mice

    Get PDF
    BACKGROUND: B cell depletion immunotherapy has been successfully employed to treat non-Hodgkin's lymphoma. In recent years, increasing attention has been directed towards also using B-cell depletion therapy as a treatment option in autoimmune disorders. However, it appears that the further development of these approaches will depend on a methodology to determine the relation of B-cell depletion to clinical response and how individual patients should be dosed. Thus far, patients have generally been followed by quantification of peripheral blood B cells, but it is not apparent that this measurement accurately reflects systemic B cell dynamics. METHODOLOGY/PRINCIPAL FINDINGS: Cellular imaging of the targeted population in vivo may provide significant insight towards effective therapy and a greater understanding of underlying disease mechanics. Superparamagnetic iron oxide (SPIO) nanoparticles in concert with near infrared (NIR) fluorescent dyes were used to label and track primary C57BL/6 B cells. Following antibody mediated B cell depletion (anti-CD79), NIR-only labeled cells were expeditiously cleared from the circulation and spleen. Interestingly, B cells labeled with both SPIO and NIR were not depleted in the spleen. CONCLUSIONS/SIGNIFICANCE: Whole body fluorescent tracking of B cells enabled noninvasive, longitudinal imaging of both the distribution and subsequent depletion of B lymphocytes in the spleen. Quantification of depletion revealed a greater than 40% decrease in splenic fluorescent signal-to-background ratio in antibody treated versus control mice. These data suggest that in vivo imaging can be used to follow B cell dynamics, but that the labeling method will need to be carefully chosen. SPIO labeling for tracking purposes, generally thought to be benign, appears to interfere with B cell functions and requires further examination

    MR imaging of osteochondral grafts and autologous chondrocyte implantation

    Get PDF
    Surgical articular cartilage repair therapies for cartilage defects such as osteochondral autograft transfer, autologous chondrocyte implantation (ACI) or matrix associated autologous chondrocyte transplantation (MACT) are becoming more common. MRI has become the method of choice for non-invasive follow-up of patients after cartilage repair surgery. It should be performed with cartilage sensitive sequences, including fat-suppressed proton density-weighted T2 fast spin-echo (PD/T2-FSE) and three-dimensional gradient-echo (3D GRE) sequences, which provide good signal-to-noise and contrast-to-noise ratios. A thorough magnetic resonance (MR)-based assessment of cartilage repair tissue includes evaluations of defect filling, the surface and structure of repair tissue, the signal intensity of repair tissue and the subchondral bone status. Furthermore, in osteochondral autografts surface congruity, osseous incorporation and the donor site should be assessed. High spatial resolution is mandatory and can be achieved either by using a surface coil with a 1.5-T scanner or with a knee coil at 3 T; it is particularly important for assessing graft morphology and integration. Moreover, MR imaging facilitates assessment of complications including periosteal hypertrophy, delamination, adhesions, surface incongruence and reactive changes such as effusions and synovitis. Ongoing developments include isotropic 3D sequences, for improved morphological analysis, and in vivo biochemical imaging such as dGEMRIC, T2 mapping and diffusion-weighted imaging, which make functional analysis of cartilage possible

    Pompe disease diagnosis and management guideline

    Get PDF
    ACMG standards and guidelines are designed primarily as an educational resource for physicians and other health care providers to help them provide quality medical genetic services. Adherence to these standards and guidelines does not necessarily ensure a successful medical outcome. These standards and guidelines should not be considered inclusive of all proper procedures and tests or exclusive of other procedures and tests that are reasonably directed to obtaining the same results. in determining the propriety of any specific procedure or test, the geneticist should apply his or her own professional judgment to the specific clinical circumstances presented by the individual patient or specimen. It may be prudent, however, to document in the patient's record the rationale for any significant deviation from these standards and guidelines.Duke Univ, Med Ctr, Durham, NC 27706 USAOregon Hlth Sci Univ, Portland, OR 97201 USANYU, Sch Med, New York, NY USAUniv Florida, Coll Med, Powell Gene Therapy Ctr, Gainesville, FL 32611 USAIndiana Univ, Bloomington, in 47405 USAUniv Miami, Miller Sch Med, Coral Gables, FL 33124 USAHarvard Univ, Childrens Hosp, Sch Med, Cambridge, MA 02138 USAUniversidade Federal de SĂŁo Paulo, SĂŁo Paulo, BrazilColumbia Univ, New York, NY 10027 USANYU, Bellevue Hosp, Sch Med, New York, NY USAColumbia Univ, Med Ctr, New York, NY 10027 USAUniversidade Federal de SĂŁo Paulo, SĂŁo Paulo, BrazilWeb of Scienc

    Reactive transport codes for subsurface environmental simulation

    Full text link

    Plasma free and total carnitine measured in children by tandem mass spectrometry

    No full text
    Free and total carnitine quantification is important as a complementary test for the diagnosis of unusual metabolic diseases, including fatty acid degradation disorders. The present study reports a new method for the quantification of free and total carnitine in dried plasma specimens by isotope dilution electrospray tandem mass spectrometry with sample derivatization. Carnitine is determined by looking for the precursor of ions of m/z = 103 of N-butylester derivative, and the method is validated by comparison with radioenzymatic assay. We obtained an inter- and intra-day assay coefficient of variation of 4.3 and 2.3, respectively. Free and total carnitine was analyzed in 309 dried plasma spot samples from children ranging in age from newborn to 14 years using the new method, which was found to be suitable for calculating reference age-related values for free and total carnitine (less than one month: 19.3 ± 2.4 and 23.5 ± 2.9; one to twelve months: 28.8 ± 10.2 and 35.9 ± 11.4; one to seven years: 30.7 ± 10.3 and 38.1 ± 11.9; seven to 14 years: 33.7 ± 11.6, and 43.1 ± 13.8 µM, respectively). No difference was found between males and females. A significant difference was observed between neonates and the other age groups. We compare our data with reference values in the literature, most of them obtained by radioenzymatic assay. However, this method is laborious and time consuming. The electrospray tandem mass spectrometry method presented here is a reliable, rapid and automated procedure for carnitine quantitation
    • …
    corecore