14 research outputs found

    Formation of electron radiation belts at Saturn by Z-mode wave acceleration

    Get PDF
    At Saturn electrons are trapped in the planet’s magnetic field and accelerated to relativistic energies to form the radiation belts, but how this dramatic increase in electron energy occurs is still unknown. Until now the mechanism of radial diffusion has been assumed but we show here that in-situ acceleration through wave particle interactions, which initial studies dismissed as ineffectual at Saturn, is in fact a vital part of the energetic particle dynamics there. We present evidence from numerical simulations based on Cassini spacecraft data that a particular plasma wave, known as Z-mode, accelerates electrons to MeV energies inside 4 RS (1 RS = 60,330 km) through a Doppler shifted cyclotron resonant interaction. Our results show that the Z-mode waves observed are not oblique as previously assumed and are much better accelerators than O-mode waves, resulting in an lectron energy spectrum that closely approaches observed values without any transport effects included

    The Kinematic Nature and Evolution of OH/IR Maser Sources

    No full text

    Auroral Hiss Emissions During Cassini's Grand Finale: Diverse Electrodynamic Interactions Between Saturn and Its Rings

    No full text
    The Cassini Grand Finale orbits offered a new view of Saturn and its environment owing to multiple highly inclined orbits with unprecedented proximity to the planet during closest approach. The Radio and Plasma Wave Science instrument detected striking signatures of plasma waves in the southern hemisphere. These all propagate in the whistler mode and are classified as (1) a filled funnel‐shaped emission, commonly known as auroral hiss. Here however, our analysis indicates that they are likely associated with currents connected to the rings. (2) First observations of very low frequency saucers directly linked to the planet on field lines also connected to the rings. The latter observations are unique to low altitude orbits, and their presence at the Earth and Saturn alike shows that they are fundamental plasma waves in planetary ionospheres. Our results give an insight, from a unique perspective, into the dynamic and diverse nature of Saturn's environment
    corecore