184 research outputs found

    Gravitational detection of a low-mass dark satellite at cosmological distance

    Full text link
    The mass-function of dwarf satellite galaxies that are observed around Local Group galaxies substantially differs from simulations based on cold dark matter: the simulations predict many more dwarf galaxies than are seen. The Local Group, however, may be anomalous in this regard. A massive dark satellite in an early-type lens galaxy at z = 0.222 was recently found using a new method based on gravitational lensing, suggesting that the mass fraction contained in substructure could be higher than is predicted from simulations. The lack of very low mass detections, however, prohibited any constraint on their mass function. Here we report the presence of a 1.9 +/- 0.1 x 10^8 M_sun dark satellite in the Einstein-ring system JVAS B1938+666 at z = 0.881, where M_sun denotes solar mass. This satellite galaxy has a mass similar to the Sagittarius galaxy, which is a satellite of the Milky Way. We determine the logarithmic slope of the mass function for substructure beyond the local Universe to be alpha = 1.1^+0.6_-0.4, with an average mass-fraction of f = 3.3^+3.6_-1.8 %, by combining data on both of these recently discovered galaxies. Our results are consistent with the predictions from cold dark matter simulations at the 95 per cent confidence level, and therefore agree with the view that galaxies formed hierarchically in a Universe composed of cold dark matter.Comment: 25 pages, 7 figures, accepted for publication in Nature (19 January 2012

    Effective but Costly, Evolved Mechanisms of Defense against a Virulent Opportunistic Pathogen in Drosophila melanogaster

    Get PDF
    Drosophila harbor substantial genetic variation for antibacterial defense, and investment in immunity is thought to involve a costly trade-off with life history traits, including development, life span, and reproduction. To understand the way in which insects invest in fighting bacterial infection, we selected for survival following systemic infection with the opportunistic pathogen Pseudomonas aeruginosa in wild-caught Drosophila melanogaster over 10 generations. We then examined genome-wide changes in expression in the selected flies relative to unselected controls, both of which had been infected with the pathogen. This powerful combination of techniques allowed us to specifically identify the genetic basis of the evolved immune response. In response to selection, population-level survivorship to infection increased from 15% to 70%. The evolved capacity for defense was costly, however, as evidenced by reduced longevity and larval viability and a rapid loss of the trait once selection pressure was removed. Counter to expectation, we observed more rapid developmental rates in the selected flies. Selection-associated changes in expression of genes with dual involvement in developmental and immune pathways suggest pleiotropy as a possible mechanism for the positive correlation. We also found that both the Toll and the Imd pathways work synergistically to limit infectivity and that cellular immunity plays a more critical role in overcoming P. aeruginosa infection than previously reported. This work reveals novel pathways by which Drosophila can survive infection with a virulent pathogen that may be rare in wild populations, however, due to their cost

    Genetic variation of male reproductive success in a laboratory population of Anopheles gambiae

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>For Anopheline mosquitoes, the vectors of human malaria, genetic variation in male reproductive success can have important consequences for any control strategy based on the release of transgenic or sterile males.</p> <p>Methods</p> <p>A quantitative genetics approach was used to test whether there was a genetic component to variation in male reproductive success in a laboratory population of <it>Anopheles gambiae</it>. Swarms of full sibling brothers were mated with a fixed number of females and their reproductive success was measured as (1) proportion of ovipositing females, (2) proportion of ovipositing females that produced larvae, (3) proportion of females that produced larvae, (4) number of eggs laid per female, (5) number of larvae per ovipositing female and (6) number of larvae per female.</p> <p>Results</p> <p>The proportion of ovipositing females (trait 1) and the proportion of ovipositing females that produced larvae (trait 2) differed among full sib families, suggesting a genetic basis of mating success. In contrast, the other measures of male reproductive success showed little variation due to the full sib families, as their variation are probably mostly due to differences among females. While age at emergence and wing length of the males were also heritable, they were not associated with reproductive success. Larger females produced more eggs, but males did not prefer such partners.</p> <p>Conclusion</p> <p>The first study to quantify genetic variation for male reproductive success in <it>A. gambiae </it>found that while the initial stages of male reproduction (i.e. the proportion of ovipositing females and the proportion of ovipositing females that produced larvae) had a genetic basis, the overall reproductive success (i.e. the mean number of larvae per female) did not.</p

    Evaluation of unclassified variants in the breast cancer susceptibility genes BRCA1 and BRCA2 using five methods: results from a population-based study of young breast cancer patients

    Get PDF
    Introduction Efforts are ongoing to determine the significance of unclassified variants (UVs) in the breast cancer susceptibility genes BRCA1/BRCA2, but no study has systematically assessed whether women carrying the suspected deleterious UVs have characteristics commonly seen among women carrying known deleterious or disease-causing mutations in BRCA1/BRCA2. Methods We sequenced BRCA1/BRCA2 in 1,469 population-based female breast cancer patients diagnosed between the ages of 20 and 49 years. We used existing literature to classify variants into known deleterious mutations, polymorphic variants, and UVs. The UVs were further classified as high risk or low risk based on five methods: allele frequency, Polyphen algorithm, sequence conservation, Grantham matrix scores, and a combination of the Grantham matrix score and sequence conservation. Furthermore, we examined whether patients who carry the variants classified as high risk using these methods have risk characteristics similar to patients with known deleterious BRCA1/BRCA2 mutations (early age at diagnosis, family history of breast cancer or ovarian cancer, and negative estrogen receptor/progesterone receptor). Results We identified 262 distinct BRCA1/BRCA2 variants, including 147 UVs, in our study population. The BRCA1 UV carriers, but not the BRCA2 UV carriers, who were classified as high risk using each classification method were more similar to the deleterious mutation carriers with respect to family history than those carriers classified as low risk. For example, the odds ratio of having a first-degree family history for the high-risk women classified using Polyphen was 3.39 (95% confidence interval = 1.16 to 9.94) compared with normal/polymorphic BRCA1 carriers. The corresponding odds ratio of low-risk women was 1.53 (95% confidence interval = 1.07 to 2.18). The odds ratio for high-risk women defined by allele frequency was 2.00 (95% confidence interval = 1.14 to 3.51), and that of low-risk women was 1.30 (95% confidence interval = 0.87 to 1.93). Conclusion The results suggest that the five classification methods yielded similar results. Polyphen was particularly better at isolating BRCA1 UV carriers likely to have a family history of breast cancer or ovarian cancer, and may therefore help to classify BRCA1 UVs. Our study suggests that these methods may not be as successful in classifying BRCA2 UVs

    Compilation of a panel of informative single nucleotide polymorphisms for bovine identification in the Northern Irish cattle population

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Animal identification is pivotal in governmental agricultural policy, enabling the management of subsidy payments, movement of livestock, test scheduling and control of disease. Advances in bovine genomics have made it possible to utilise inherent genetic variability to uniquely identify individual animals by DNA profiling, much as has been achieved with humans over the past 20 years. A DNA profiling test based on bi-allelic single nucleotide polymorphism (SNP) markers would offer considerable advantages over current short tandem repeat (STR) based industry standard tests, in that it would be easier to analyse and interpret. In this study, a panel of 51 genome-wide SNPs were genotyped across panels of semen DNA from 6 common breeds for the purposes of ascertaining allelic frequency. For SNPs on the same chromosome, the extent of linkage disequilbrium was determined from genotype data by Expectation Maximization (EM) algorithm. Minimum probabilities of unique identification were determined for each breed panel. The usefulness of this SNP panel was ascertained by comparison to the current bovine STR Stockmarks II assay. A statistically representative random sampling of bovine animals from across Northern Ireland was assembled for the purposes of determining the population allele frequency for these STR loci and subsequently, the minimal probability of unique identification they conferred in sampled bovine animals from Northern Ireland.</p> <p>Results</p> <p>6 SNPs exhibiting a minor allele frequency of less than 0.2 in more than 3 of the breed panels were excluded. 2 Further SNPs were found to reside in coding areas of the cattle genome and were excluded from the final panel. The remaining 43 SNPs exhibited genotype frequencies which were in Hardy Weinberg Equilibrium. SNPs on the same chromosome were observed to have no significant linkage disequilibrium/allelic association. Minimal probabilities of uniquely identifying individual animals from each of the breeds were obtained and were observed to be superior to those conferred by the industry standard STR assay.</p> <p>Conclusions</p> <p>The 43 SNPs characterised herein may constitute a starting point for the development of a SNP based DNA identification test for European cattle.</p

    Successive Increases in the Resistance of Drosophila to Viral Infection through a Transposon Insertion Followed by a Duplication

    Get PDF
    To understand the molecular basis of how hosts evolve resistance to their parasites, we have investigated the genes that cause variation in the susceptibility of Drosophila melanogaster to viral infection. Using a host-specific pathogen of D. melanogaster called the sigma virus (Rhabdoviridae), we mapped a major-effect polymorphism to a region containing two paralogous genes called CHKov1 and CHKov2. In a panel of inbred fly lines, we found that a transposable element insertion in the protein coding sequence of CHKov1 is associated with increased resistance to infection. Previous research has shown that this insertion results in a truncated messenger RNA that encodes a far shorter protein than the susceptible allele. This resistant allele has rapidly increased in frequency under directional selection and is now the commonest form of the gene in natural populations. Using genetic mapping and site-specific recombination, we identified a third genotype with considerably greater resistance that is currently rare in the wild. In these flies there have been two duplications, resulting in three copies of both the truncated allele of CHKov1 and CHKov2 (one of which is also truncated). Remarkably, the truncated allele of CHKov1 has previously been found to confer resistance to organophosphate insecticides. As estimates of the age of this allele predate the use of insecticides, it is likely that this allele initially functioned as a defence against viruses and fortuitously β€œpre-adapted” flies to insecticides. These results demonstrate that strong selection by parasites for increased host resistance can result in major genetic changes and rapid shifts in allele frequencies; and, contrary to the prevailing view that resistance to pathogens can be a costly trait to evolve, the pleiotropic effects of these changes can have unexpected benefits

    Genome-wide imputation study identifies novel HLA locus for pulmonary fibrosis and potential role for auto-immunity in fibrotic idiopathic interstitial pneumonia

    Get PDF
    Fibrotic idiopathic interstitial pneumonias (fIIP) are a group of fatal lung diseases with largely unknown etiology and without definitive treatment other than lung transplant to prolong life. There is strong evidence for the importance of both rare and common genetic risk alleles in familial and sporadic disease. We have previously used genome-wide single nucleotide polymorphism data to identify 10 risk loci for fIIP. Here we extend that work to imputed genome-wide genotypes and conduct new RNA sequencing studies of lung tissue to identify and characterize new fIIP risk loci. Results: We performed genome-wide genotype imputation association analyses in 1616 non-Hispanic white (NHW) cases and 4683 NHW controls followed by validation and replication (878 cases, 2017 controls) genotyping and targeted gene expression in lung tissue. Following meta-analysis of the discovery and replication populations, we identified a novel fIIP locus in the HLA region of chromosome 6 (rs7887 Pmeta = 3.7 Γ— 10-09). Imputation of classic HLA alleles identified two in high linkage disequilibrium that are associated with fIIP (DRB1 15:01 P = 1.3 Γ— 10-7 and DQB1 06:02 P = 6.1 Γ— 10-8). Targeted RNA-sequencing of the HLA locus identified 21 genes differentially expressed between fibrotic and control lung tissue (Q < 0.001), many of which are involved in immune and inflammatory response regulation. In addition, the putative risk alleles, DRB1 15:01 and DQB1 06:02, are associated with expression of the DQB1 gene among fIIP cases (Q < 1 Γ— 10-16)

    C. elegans Germline-Deficient Mutants Respond to Pathogen Infection Using Shared and Distinct Mechanisms

    Get PDF
    Reproduction extracts a cost in resources that organisms are then unable to utilize to deal with a multitude of environmental stressors. In the nematode C. elegans, development of the germline shortens the lifespan of the animal and increases its susceptibility to microbial pathogens. Prior studies have demonstrated germline-deficient nematodes to have increased resistance to Gram negative bacteria. We show that germline-deficient strains display increased resistance across a broad range of pathogens including Gram positive and Gram negative bacteria, and the fungal pathogen Cryptococcus neoformans. Furthermore, we show that the FOXO transcription factor DAF-16, which regulates longevity and immunity in C. elegans, appears to be crucial for maintaining longevity in both wild-type and germline-deficient backgrounds. Our studies indicate that germline-deficient mutants glp-1 and glp-4 respond to pathogen infection using common and different mechanisms that involve the activation of DAF-16

    Differences in gait patterns, pain, function and quality of life between males and females with knee osteoarthritis: a clinical trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to gain a deeper understanding of the gender differences in knee osteoarthritis (OA) by evaluating the differences in gait spatio-temporal parameters and the differences in pain, quality of life and function between males and females suffering from knee OA.</p> <p>Methods</p> <p>49 males and 85 females suffering from bilateral medial compartment knee OA participated in this study. Each patient underwent a computerized gait test and completed the WOMAC questionnaire and the SF-36 health survey. Independent t-tests were performed to examine the differences between males and females in age, BMI, spatio-temporal parameters, the WOMAC questionnaire and the SF-36 health survey.</p> <p>Results</p> <p>Males and females had different gait patterns. Although males and females walked at the same walking speed, cadence and step length, they presented significant differences in the gait cycle phases. Males walked with a smaller stance and double limb support, and with a larger swing and single limb support compared to females. In addition, males walked with a greater toe out angle compared to females. While significant differences were not found in the WOMAC subscales, females consistently reported higher levels of pain and disability.</p> <p>Conclusion</p> <p>The spatio-temporal differences between genders may suggest underlying differences in the gait strategies adopted by males and females in order to reduce pain and cope with the loads acting on their affected joints, two key aspects of knee OA. These gender effects should therefore be taken into consideration when evaluating patients with knee OA.</p> <p>Trial Registration</p> <p>The study is registered in the NIH clinical trial registration, protocol No. NCT00599729.</p
    • …
    corecore