18 research outputs found

    Nutrient Administration and Resistance Training

    Get PDF
    Skeletal muscle tissue is tightly regulated throughout our bodies by balancing its synthesis and breakdown. Many factors are known to exist that cause profound changes on the overall status of skeletal muscle, some of which include exercise, nutrition, hormonal influences and disease. Muscle hypertrophy results when protein synthesis is greater than protein breakdown. Resistance training is a popular form of exercise that has been shown to increase muscular strength and muscular hypertrophy. In general, resistance training causes a stimulation of protein synthesis as well as an increase in protein breakdown, resulting in a negative balance of protein. Providing nutrients, specifically amino acids, helps to stimulate protein synthesis and improve the overall net balance of protein. Strategies to increase the concentration and availability of amino acids after resistance exercise are of great interest and have been shown to effectively increase overall protein synthesis. [1-3] After exercise, providing carbohydrate has been shown to mildly stimulate protein synthesis while addition of free amino acids prior to and after exercise, specifically essential amino acids, causes a rapid pronounced increase in protein synthesis as well as protein balance.[1,3] Evidence exists for a dose-response relationship of infused amino acids while no specific regimen exists for optimal dosing upon ingestion. Ingestion of whole or intact protein sources (e.g., protein powders, meal-replacements) has been shown to cause similar improvements in protein balance after resistance exercise when compared to free amino acid supplements. Future research should seek to determine optimal dosing of ingested intact amino acids in addition to identifying the cellular mechanistic machinery (e.g. transcriptional and translational mechanisms) for causing the increase in protein synthesis

    Phylogenetic Analysis of Seven WRKY Genes across the Palm Subtribe Attaleinae (Arecaceae) Identifies Syagrus as Sister Group of the Coconut

    Get PDF
    BACKGROUND:The Cocoseae is one of 13 tribes of Arecaceae subfam. Arecoideae, and contains a number of palms with significant economic importance, including the monotypic and pantropical Cocos nucifera L., the coconut, the origins of which have been one of the "abominable mysteries" of palm systematics for decades. Previous studies with predominantly plastid genes weakly supported American ancestry for the coconut but ambiguous sister relationships. In this paper, we use multiple single copy nuclear loci to address the phylogeny of the Cocoseae subtribe Attaleinae, and resolve the closest extant relative of the coconut. METHODOLOGY/PRINCIPAL FINDINGS:We present the results of combined analysis of DNA sequences of seven WRKY transcription factor loci across 72 samples of Arecaceae tribe Cocoseae subtribe Attaleinae, representing all genera classified within the subtribe, and three outgroup taxa with maximum parsimony, maximum likelihood, and Bayesian approaches, producing highly congruent and well-resolved trees that robustly identify the genus Syagrus as sister to Cocos and resolve novel and well-supported relationships among the other genera of the Attaleinae. We also address incongruence among the gene trees with gene tree reconciliation analysis, and assign estimated ages to the nodes of our tree. CONCLUSIONS/SIGNIFICANCE:This study represents the as yet most extensive phylogenetic analyses of Cocoseae subtribe Attaleinae. We present a well-resolved and supported phylogeny of the subtribe that robustly indicates a sister relationship between Cocos and Syagrus. This is not only of biogeographic interest, but will also open fruitful avenues of inquiry regarding evolution of functional genes useful for crop improvement. Establishment of two major clades of American Attaleinae occurred in the Oligocene (ca. 37 MYBP) in Eastern Brazil. The divergence of Cocos from Syagrus is estimated at 35 MYBP. The biogeographic and morphological congruence that we see for clades resolved in the Attaleinae suggests that WRKY loci are informative markers for investigating the phylogenetic relationships of the palm family

    The influence of dietary carbohydrate on performance of supramaximal intermittent exercise

    No full text
    The present investigation examined the influence of dietary carbohydrate (CHO) on the performance of supramaximal intermittent exercise. A group of 14 moderately trained male students [mean age 21.0 (SD 1.6) years] completed a maximal oxygen consumption test and two identical 'maximal interval tests' (MIT1 and MIT2) over a 10-day experimental period. Each MIT involved five 60-s all-out periods of cycling (against 0.736 N . kg-1 body mass), with each period separated by 5 min of passive recovery. All subjects consumed a moderate CHO diet for 3 days preceding MIT1 (55.3% of energy intake as CHO) and were then randomly assigned to either a high CHO (83%), moderate CHO (58%) or low CHO (12%) diet for the 3 days separating MIT1 and MIT2. All food and drink consumed during the experimental period was weighed and recorded for later dietary analysis. Measurements of work done, exercise oxygen consumption (VO2), venous blood pH, plasma lactate and plasma glucose concentrations were compared between interval tests. Independent Student's t-tests revealed that the 5.6% increase in total work done recorded by the high CHO group and the 2.3% increase by the moderate CHO group between MIT1 and MIT2, were significantly different to the 5.4% decrease in performance recorded for the low CHO group (

    Two-dimensional photonic-bandgap structures operating at near-infrared wavelengths

    No full text
    Photonic crystals are artificial structures having a periodic dielectric structure designed to influence the behaviour of photons in much the same way that the crystal structure of a semiconductor affects the properties of electrons *RF 1*. In particular, photonic crystals forbid propagation of photons having a certain range of energies (known as a photonic bandgap), a property that could be incorporated in the design of novel optoelectronic devices [2]. Following the demonstration of a material with a full photonic bandgap at microwave frequencies [3], there has been considerable progress in the fabrication of three-dimensional photonic crystals with operational wavelengths as short as 1.5 micrometer [4], although the optical properties of such structures are still far from ideal [5]. Here we show that, by restricting the geometry of the photonic crystal to two dimensions (in a waveguide configuration), structures with polarization-sensitive photonic bandgaps at still lower wavelengths (in the range 800-900 nm) can be readily fabricated. Our approach should permit the straightforward integration of photonic-bandgap structures with other optical and optoelectronic devices
    corecore