1,383 research outputs found

    Increasing diterpene yield with a modular metabolic engineering system in E. coli: comparison of MEV and MEP isoprenoid precursor pathway engineering

    Get PDF
    Engineering biosynthetic pathways in heterologous microbial host organisms offers an elegant approach to pathway elucidation via the incorporation of putative biosynthetic enzymes and characterization of resulting novel metabolites. Our previous work in Escherichia coli demonstrated the feasibility of a facile modular approach to engineering the production of labdane-related diterpene (20 carbon) natural products. However, yield was limited (<0.1 mg/L), presumably due to reliance on endogenous production of the isoprenoid precursors dimethylallyl diphosphate and isopentenyl diphosphate. Here, we report incorporation of either a heterologous mevalonate pathway (MEV) or enhancement of the endogenous methyl erythritol phosphate pathway (MEP) with our modular metabolic engineering system. With MEP pathway enhancement, it was found that pyruvate supplementation of rich media and simultaneous overexpression of three genes (idi, dxs, and dxr) resulted in the greatest increase in diterpene yield, indicating distributed metabolic control within this pathway. Incorporation of a heterologous MEV pathway in bioreactor grown cultures resulted in significantly higher yields than MEP pathway enhancement. We have established suitable growth conditions for diterpene production levels ranging from 10 to >100 mg/L of E. coli culture. These amounts are sufficient for nuclear magnetic resonance analyses, enabling characterization of enzymatic products and hence, pathway elucidation. Furthermore, these results represent an up to >1,000-fold improvement in diterpene production from our facile, modular platform, with MEP pathway enhancement offering a cost effective alternative with reasonable yield. Finally, we reiterate here that this modular approach is expandable and should be easily adaptable to the production of any terpenoid natural product

    Induction of fish biomarkers by synthetic-based drilling muds

    Get PDF
    The study investigated the effects of chronic exposure of pink snapper (Pagrus auratus Forster), to synthetic based drilling muds (SBMs). Fish were exposed to three mud systems comprised of three different types of synthetic based fluids (SBFs): an ester (E), an isomerized olefin (IO) and linear alpha olefin (LAO). Condition factor (CF), liver somatic index (LSI), hepatic detoxification (EROD activity), biliary metabolites, DNA damage and stress proteins (HSP-70) were determined. Exposure to E caused biologically significant effects by increasing CF and LSI, and triggered biliary metabolite accumulation. While ester-based SBFs have a rapid biodegradation rate in the environment, they caused the most pronounced effects on fish health. IO induced EROD activity and biliary metabolites and LAO induced EROD activity and stress protein levels. The results demonstrate that while acute toxicity of SBMs is generally low, chronic exposure to weathering cutting piles has the potential to affect fish health. The study illustrates the advantages of the Western Australian government case-by-case approach to drilling fluid management, and highlights the importance of considering the receiving environment in the selection of SBMs

    Anaesthetic considerations of adults with Morquio's syndrome - a case report

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The anaesthetic management of patients with Morquio syndrome is complicated by a number of factors including odontoid hypoplasia, atlantoaxial instability, thoracic kyphosis, and deposition of mucopolysaccharides in the soft tissue of the oropharnyx.</p> <p>Case presentation</p> <p>Herein we describe the anaesthetic considerations and management of a 26 year old adult with Morquio syndrome, who presented for an elective hip replacement.</p> <p>Conclusion</p> <p>This report details an awake fiberoptic intubation in an adult with Morquio syndrome. We recommend that this approach be considered in patients with Morquio syndrome undergoing general anaesthesia.</p

    Effects of long-term low-dose oxygen supplementation on the epithelial function, collagen metabolism and interstitial fibrogenesis in the guinea pig lung

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The patient population receiving long-term oxygen therapy has increased with the rising morbidity of COPD. Although high-dose oxygen induces pulmonary edema and interstitial fibrosis, potential lung injury caused by long-term exposure to low-dose oxygen has not been fully analyzed. This study was designed to clarify the effects of long-term low-dose oxygen inhalation on pulmonary epithelial function, edema formation, collagen metabolism, and alveolar fibrosis.</p> <p>Methods</p> <p>Guinea pigs (n = 159) were exposed to either 21% or 40% oxygen for a maximum of 16 weeks, and to 90% oxygen for a maximum of 120 hours. Clearance of inhaled technetium-labeled diethylene triamine pentaacetate (Tc-DTPA) and bronchoalveolar lavage fluid-to-serum ratio (BAL/Serum) of albumin (ALB) were used as markers of epithelial permeability. Lung wet-to-dry weight ratio (W/D) was measured to evaluate pulmonary edema, and types I and III collagenolytic activities and hydroxyproline content in the lung were analyzed as indices of collagen metabolism. Pulmonary fibrotic state was evaluated by histological quantification of fibrous tissue area stained with aniline blue.</p> <p>Results</p> <p>The clearance of Tc-DTPA was higher with 2 week exposure to 40% oxygen, while BAL/Serum Alb and W/D did not differ between the 40% and 21% groups. In the 40% oxygen group, type I collagenolytic activities at 2 and 4 weeks and type III collagenolytic activity at 2 weeks were increased. Hydroxyproline and fibrous tissue area were also increased at 2 weeks. No discernible injury was histologically observed in the 40% group, while progressive alveolar damage was observed in the 90% group.</p> <p>Conclusion</p> <p>These results indicate that epithelial function is damaged, collagen metabolism is affected, and both breakdown of collagen fibrils and fibrogenesis are transiently induced even with low-dose 40% oxygen exposure. However, these changes are successfully compensated even with continuous exposure to low-dose oxygen. We conclude that long-term low-dose oxygen exposure does not significantly induce permanent lung injury in guinea pigs.</p

    Contribution of the Type VI Secretion System Encoded in SPI-19 to Chicken Colonization by Salmonella enterica Serotypes Gallinarum and Enteritidis

    Get PDF
    Salmonella Gallinarum is a pathogen with a host range specific to poultry, while Salmonella Enteritidis is a broad host range pathogen that colonizes poultry sub-clinically but is a leading cause of gastrointestinal salmonellosis in humans and many other species. Despite recent advances in our understanding of the complex interplay between Salmonella and their hosts, the molecular basis of host range restriction and unique pathobiology of Gallinarum remain largely unknown. Type VI Secretion System (T6SS) represents a new paradigm of protein secretion that is critical for the pathogenesis of many Gram-negative bacteria. We recently identified a putative T6SS in the Salmonella Pathogenicity Island 19 (SPI-19) of Gallinarum. In Enteritidis, SPI-19 is a degenerate element that has lost most of the T6SS functions encoded in the island. In this work, we studied the contribution of SPI-19 to the colonization of Salmonella Gallinarum strain 287/91 in chickens. Non-polar deletion mutants of SPI-19 and the clpV gene, an essential T6SS component, colonized the ileum, ceca, liver and spleen of White Leghorn chicks poorly compared to the wild-type strain after oral inoculation. Return of SPI-19 to the ΔSPI-19 mutant, using VEX-Capture, complemented this colonization defect. In contrast, transfer of SPI-19 from Gallinarum to Enteritidis resulted in transient increase in the colonization of the ileum, liver and spleen at day 1 post-infection, but at days 3 and 5 post-infection a strong colonization defect of the gut and internal organs of the experimentally infected chickens was observed. Our data indicate that SPI-19 and the T6SS encoded in this region contribute to the colonization of the gastrointestinal tract and internal organs of chickens by Salmonella Gallinarum and suggest that degradation of SPI-19 T6SS in Salmonella Enteritidis conferred an advantage in colonization of the avian host

    Long term hemodialysis aggravates lipolytic activity reduction and very low density, low density lipoproteins composition in chronic renal failure patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dyslipidemia, particularly hypertriglyceridemia is common in uremia, and represents an independent risk factor for atherosclerosis.</p> <p>Methods</p> <p>To investigate the effects of hemodialysis (HD) duration on very low density lipoprotein (VLDL) and low density lipoprotein (LDL) compositions and lipopolytic activities, 20 patients on 5 to 7 years hemodialysis were followed-up during 9 years. Blood samples were drawn at T0 (beginning of the study), T1 (3 years after initiating study), T2 (6 years after initiating study) and T3 (9 years after initiating study). T0 was taken as reference.</p> <p>Results</p> <p>Triacylglycerols (TG) values were correlated with HD duration (r = 0.70, P < 0.05). An increase of total cholesterol was noted at T2 and T3. Lowered activity was observed for lipoprotein lipase (LPL) (-44%) at T3 and hepatic lipase (HL) (-29%) at T1, (-64%) at T2 and (-73%) at T3. Inverse relationships were found between HD duration and LPL activity (r = -0.63, P < 0.05), and HL activity (r = -0.71, P < 0.01). At T1, T2 and T3, high VLDL-amounts and VLDL-TG and decreased VLDL-phospholipids values were noted. Increased LDL-cholesteryl esters values were noted at T1 and T2 and in LDL-unesterified cholesterol at T2 and T3.</p> <p>Conclusion</p> <p>Despite hemodialysis duration, VLDL-LDL metabolism alterations are aggravated submitting patients to a greater risk of atherosclerosis.</p

    Preparation and optical properties of novel bioactive photonic crystals obtained from core-shell poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) microspheres

    Get PDF
    Optical properties of polymer microspheres with polystyrene cores and polyglycidol-enriched shells poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol) (P(S/PGL) particles with number average diameters Dn determined by scanning electron microscopy equal 237 and 271 nm), were studied before and after immobilization of ovalbumin. The particles were synthesized by emulsifier-free emulsion copolymerization of styrene and polyglycidol macromonomer (poly(styrene/α-tert-butoxy-ω-vinylbenzyl-polyglycidol)) initiated with potassium persulfate. Molar fraction of polyglycidol units in the interfacial layer of the microspheres determined by XPS was equal 42.6 and 34.0%, for the particles with Dn equal 137 and 271 nm, respectively. Colloidal crystals from the aforementioned particles were prepared by deposition of particle suspensions on the glass slides and subsequent evaporation of water. It was found that optical properties of colloidal crystals from the P(S/PGL) microspheres strongly depend on modification of their interfacial layer by covalent immobilization of ovalbumin. The coating of particles with ovalbumin resulted in decreasing their refractive index from 1.58 to 1.52
    • …
    corecore