97 research outputs found

    Measurement of Trilinear Gauge Couplings in e+ee^+ e^- Collisions at 161 GeV and 172 GeV

    Get PDF
    Trilinear gauge boson couplings are measured using data taken by DELPHI at 161~GeV and 172~GeV. Values for WWVWWV couplings (V=Z,γV=Z, \gamma) are determined from a study of the reactions \eeWW\ and \eeWev, using differential distributions from the WWWW final state in which one WW decays hadronically and the other leptonically, and total cross-section data from other channels. Limits are also derived on neutral ZVγZV\gamma couplings from an analysis of the reaction \eegi

    Search for neutral heavy leptons produced in ZZ decays

    Get PDF
    Weak isosinglet Neutral Heavy Leptons (νm) have been searched for using data collected by the DELPHI detector corresponding to 3.3 × 106 hadronic Z0 decays at LEP1. Four separate searches have been performed, for short-lived νm production giving monojet or acollinear jet topologies, and for long-lived νm giving detectable secondary vertices or calorimeter clusters. No indication of the existence of these particles has been found, leading to an upper limit for the branching ratio BR(Z0 → νmν̄) of about 1.3 × 10-6 at 95% confidence level for νm masses between 3.5 and 50 GeV/c2. Outside this range the limit weakens rapidly with the νm mass. The results are also interpreted in terms of limits for the single production of excited neutrinos. © Springer-Verlag 1997

    Nonsyndromic hearing impairment is associated with a mutation in DFNA5.

    No full text
    Nonsyndromic hearing impairment is one of the most heterogeneous hereditary conditions, with more than 40 loci mapped on the human genome, however, only a limited number of genes implicated in hearing loss have been identified. We previously reported linkage to chromosome 7p15 for autosomal dominant hearing impairment segregating in an extended Dutch family (DFNA5). Here, we report a further refinement of the DFNA5 candidate region and the isolation of a gene from this region that is expressed in the cochlea. In intron 7 of this gene, we identified an insertion/deletion mutation that does not affect intron-exon boundaries, but deletes five G-triplets at the 3' end of the intron. The mutation co-segregated with deafness in the family and causes skipping of exon 8, resulting in premature termination of the open reading frame. As no physiological function could be assigned, the gene was designated DFNA5
    corecore