16 research outputs found

    Viable Tumor Tissue Adherent to Needle Applicators after Local Ablation: A Risk Factor for Local Tumor Progression

    Get PDF
    Background. Local tumor progression (LTP) is a serious complication after local ablation of malignant liver tumors, negatively influencing patient survival. LTP may be the result of incomplete ablation of the treated tumor. In this study, we determined whether viable tumor cells attached to the needle applicator after ablation was associated with LTP and disease-free survival. Methods. In this prospective study, tissue was collected of 96 consecutive patients who underwent local liver ablations for 130 liver malignancies. Cells and tissue attached to the needle applicators were analyzed for viability using glucose-6-phosphate-dehydrogenase staining and autofluorescence intensity levels of H&E stained sections. Patients were followed-up until disease progression. Results. Viable tumor cells were found on the needle applicators after local ablation in 26.7% of patients. The type of needle applicator used, an open approach, and the omission of track ablation were significantly correlated with viable tumor tissue adherent to the needle applicator. The presence of viable cells was an independent predictor of LTP. The attachment of viable cells to the needle applicators was associated with a shorter time to LTP. Conclusions. Viable tumor cells adherent to the needle applicators were found after ablation of 26.7% of patients. An independent risk factor for viable cells adherent to the needle applicators is the omission of track ablation. We recommend using only RFA devices that have track ablation functionality. Adherence of viable tumor cells to the needle applicator after local ablation was an independent risk factor for LT

    Clinical Significance of Telomerase Activity in Peritoneal Disseminated Cells: Gastrointestinal Cancers

    No full text
    Early detection and accurate staging of gastrointestinal (GI) cancers are difficult. The aim of this study was to evaluate whether telomerase activity (TA) in exfoliated/disseminated epithelial cells could be used as a reliable marker for GI cancers. TA was evaluated with the real-time RTQ-TRAP in immunomagnetically sorted peritoneal epithelial cells from 60 patients undergoing surgical treatment. Thirty-two patients were clinically diagnosed with a variety of GI cancers: 1 had premalignant disease, 2 had history of GI cancers, and 25 patients were clinically negative for cancer. Here we report that all types and all cases of gastrointestinal cancers were telomerase positive, thereby demonstrating 100% sensitivity for cancer. Eighteen of 25 nonmalignant cases had undetectable levels of TA, 2 had low, and 5 of 25 expressed high TA levels. Because normal epithelial cells usually have low TA and a lesser tendency to exfoliate compared with cancer cells, it is of great importance to have close follow-up for these patients to exclude possible malignant disease. We conclude that RTQ-TRAP assessment of TA in immunomagnetically sorted peritoneal epithelial cells has 100% sensitivity and 100% negative predictive value for GI cancers, and therefore, can be considered as a valuable tool and useful addition to current standard diagnostic methods. Clinical significance of unusually high telomerase activity in some clinically negative for cancer cases requires further study
    corecore