26 research outputs found

    Confirmation of a non-synonymous SNP in PNPLA8 as a candidate causal mutation for Weaver syndrome in Brown Swiss cattle

    Get PDF
    Background: Bovine progressive degenerative myeloencephalopathy (Weaver syndrome) is a neurodegenerative disorder in Brown Swiss cattle that is characterized by progressive hind leg weakness and ataxia, while sensorium and spinal reflexes remain unaffected. Although the causal mutation has not been identified yet, an indirect genetic test based on six microsatellite markers and consequent exclusion of Weaver carriers from breeding have led to the complete absence of new cases for over two decades. Evaluation of disease status by imputation of 41 diagnostic single nucleotide polymorphisms (SNPs) and a common haplotype published in 2013 identified several suspected carriers in the current breeding population, which suggests a higher frequency of the Weaver allele than anticipated. In order to prevent the reemergence of the disease, this study aimed at mapping the gene that underlies Weaver syndrome and thus at providing the basis for direct genetic testing and monitoring of today's Braunvieh/Brown Swiss herds. Results: Combined linkage/linkage disequilibrium mapping on Bos taurus chromosome (BTA) 4 based on Illumina Bovine SNP50 genotypes of 43 Weaver-affected, 31 Weaver carrier and 86 Weaver-free animals resulted in a maximum likelihood ratio test statistic value at position 49,812,384 bp. The confidence interval (0.853 Mb) determined by the 2-LOD drop-off method was contained within a 1.72-Mb segment of extended homozygosity. Exploitation of whole-genome sequence data from two official Weaver carriers and 1145 other bulls that were sequenced in Run4 of the 1000 bull genomes project showed that only a non-synonymous SNP (rs800397662) within the PNPLA8 gene at position 49,878,773 bp was concordant with the Weaver carrier status. Targeted SNP genotyping confirmed this SNP as a candidate causal mutation for Weaver syndrome. Genotyping for the candidate causal mutation in a random sample of 2334 current Braunvieh animals suggested a frequency of the Weaver allele of 0.26 %. Conclusions: Through combined use of exhaustive sequencing data and SNP genotyping results, we were able to provide evidence that supports the non-synonymous mutation at position 49,878,773 bp as the most likely causal mutation for Weaver syndrome. Further studies are needed to uncover the exact mechanisms that underlie this syndrome

    Pt(II) complex containing the 1R,2R enantiomer of trans-1,2-diamino-4-cyclohexene ligand effectively and selectively inhibits the viability of aggressive pancreatic adenocarcinoma cells and alters their lipid metabolism

    No full text
    Here, we investigated the mechanism of antiproliferative action in cancer cells of new compounds structurally derived from oxaliplatin, namely a pair of enantiomers [Pt(OXA)(1R,2R-DACHEX)] (1) and [Pt(OXA)(1S,2S-DACHEX)] (2) (OXA = oxalate, DACHEX = trans-1,2-diamino-4-cyclohexene). While oxaliplatin is used almost exclusively to treat colorectal and other gastrointestinal cancers, new complex 1 shows instead high potency in malignant pancreatic adenocarcinoma PSN1 cells including superior selectivity for pancreatic cancer over noncancerous cells. Utilizing a multi-platform biochemical approach to study the unique features of the mechanism of action of this new platinum-based drug, we show that 1 has a much greater ability to penetrate pancreatic tumors than its S,S enantiomer 2 and oxaliplatin, and to be transported into cells as bound to plasma proteins. Additionally, the mechanism of action of 1 and, to a lesser extent, oxaliplatin in pancreatic cancer cells involves alterations of the lipogenesis pathway, namely inhibition of de novo lipid synthesis, acting by a new mechanism not yet considered for anticancer action of clinically used antitumor platinum drugs. These data highlight the functional diversity of platinum anticancer compounds and the potential benefits of finding new anticancer drugs applying a mechanism-based rationale
    corecore