611 research outputs found

    Repulsively bound atom pairs in an optical lattice

    Full text link
    Throughout physics, stable composite objects are usually formed via attractive forces, which allow the constituents to lower their energy by binding together. Repulsive forces separate particles in free space. However, in a structured environment such as a periodic potential and in the absence of dissipation, stable composite objects can exist even for repulsive interactions. Here we report on the first observation of such an exotic bound state, comprised of a pair of ultracold atoms in an optical lattice. Consistent with our theoretical analysis, these repulsively bound pairs exhibit long lifetimes, even under collisions with one another. Signatures of the pairs are also recognised in the characteristic momentum distribution and through spectroscopic measurements. There is no analogue in traditional condensed matter systems of such repulsively bound pairs, due to the presence of strong decay channels. These results exemplify on a new level the strong correspondence between the optical lattice physics of ultracold bosonic atoms and the Bose-Hubbard model, a correspondence which is vital for future applications of these systems to the study of strongly correlated condensed matter systems and to quantum information.Comment: 5 pages, 4 figure

    Dirac Equation with Spin Symmetry for the Modified P\"oschl-Teller Potential in DD-dimensions

    Full text link
    We present solutions of the Dirac equation with spin symmetry for vector and scalar modified P\"oschl-Teller potential within framework of an approximation of the centrifugal term. The relativistic energy spectrum is obtained using the Nikiforov-Uvarov method and the two-component spinor wavefunctions are obtain are in terms of the Jacobi polynomials. It is found that there exist only positive-energy states for bound states under spin symmetry, and the energy levels increase with the dimension and the potential range parameter α\alpha.Comment: 9 pages and 1tabl

    Safety, tumor trafficking and immunogenicity of chimeric antigen receptor (CAR)-T cells specific for TAG-72 in colorectal cancer.

    Get PDF
    BackgroundT cells engineered to express chimeric antigen receptors (CARs) have established efficacy in the treatment of B-cell malignancies, but their relevance in solid tumors remains undefined. Here we report results of the first human trials of CAR-T cells in the treatment of solid tumors performed in the 1990s.MethodsPatients with metastatic colorectal cancer (CRC) were treated in two phase 1 trials with first-generation retroviral transduced CAR-T cells targeting tumor-associated glycoprotein (TAG)-72 and including a CD3-zeta intracellular signaling domain (CART72 cells). In trial C-9701 and C-9702, CART72 cells were administered in escalating doses up to 1010 total cells; in trial C-9701 CART72 cells were administered by intravenous infusion. In trial C-9702, CART72 cells were administered via direct hepatic artery infusion in patients with colorectal liver metastases. In both trials, a brief course of interferon-alpha (IFN-α) was given with each CART72 infusion to upregulate expression of TAG-72.ResultsFourteen patients were enrolled in C-9701 and nine in C-9702. CART72 manufacturing success rate was 100% with an average transduction efficiency of 38%. Ten patients were treated in CC-9701 and 6 in CC-9702. Symptoms consistent with low-grade, cytokine release syndrome were observed in both trials without clear evidence of on target/off tumor toxicity. Detectable, but mostly short-term (≤14 weeks), persistence of CART72 cells was observed in blood; one patient had CART72 cells detectable at 48 weeks. Trafficking to tumor tissues was confirmed in a tumor biopsy from one of three patients. A subset of patients had 111Indium-labeled CART72 cells injected, and trafficking could be detected to liver, but T cells appeared largely excluded from large metastatic deposits. Tumor biomarkers carcinoembryonic antigen (CEA) and TAG-72 were measured in serum; there was a precipitous decline of TAG-72, but not CEA, in some patients due to induction of an interfering antibody to the TAG-72 binding domain of humanized CC49, reflecting an anti-CAR immune response. No radiologic tumor responses were observed.ConclusionThese findings demonstrate the relative safety of CART72 cells. The limited persistence supports the incorporation of co-stimulatory domains in the CAR design and the use of fully human CAR constructs to mitigate immunogenicity

    Surface electrons at plasma walls

    Full text link
    In this chapter we introduce a microscopic modelling of the surplus electrons on the plasma wall which complements the classical description of the plasma sheath. First we introduce a model for the electron surface layer to study the quasistationary electron distribution and the potential at an unbiased plasma wall. Then we calculate sticking coefficients and desorption times for electron trapping in the image states. Finally we study how surplus electrons affect light scattering and how charge signatures offer the possibility of a novel charge measurement for dust grains.Comment: To appear in Complex Plasmas: Scientific Challenges and Technological Opportunities, Editors: M. Bonitz, K. Becker, J. Lopez and H. Thomse

    A four phase development model for integrated care services in the Netherlands

    Get PDF
    Background. Multidisciplinary and interorganizational arrangements for the delivery of coherent integrated care are being developed in a large number of countries. Although there are many integrated care programs worldwide, the process of developing these programs and interorganizational collaboration is described in the literature only to a limited extent. The purpose of this study is to explore how local integrated care services are developed in the Netherlands, and to conceptualize and operationalize a development model of integrated care. Methods. The research is based on an expert panel study followed by a two-part questionnaire, designed to identify the development process of integrated care. Essential elements of integrated care, which were developed in a previous Delphi and Concept Mapping Study, were analyzed in relation to development process of integrated care. Results. Integrated care development can be characterized by four developmental phases: the initiative and design phase; the experimental and execution phase; the expansion and monitoring phase; and the consolidation and transformation phase. Different elements of integrated care have been identified in the various developmental phases. Conclusion. The findings provide a descriptive model of the development process that integrated care services can undergo in the Netherlands. The findings have important implications for integrated care services, which can use the model as an instrument to reflect on their current practices. The model can be used to help to identify improvement areas in practice. The model provides a framework for developing evaluation designs for integrated care arrangements. Further research is recommended to test the developed model in practice and to add international experiences

    Mass and Angular Momentum in General Relativity

    Full text link
    We present an introduction to mass and angular momentum in General Relativity. After briefly reviewing energy-momentum for matter fields, first in the flat Minkowski case (Special Relativity) and then in curved spacetimes with or without symmetries, we focus on the discussion of energy-momentum for the gravitational field. We illustrate the difficulties rooted in the Equivalence Principle for defining a local energy-momentum density for the gravitational field. This leads to the understanding of gravitational energy-momentum and angular momentum as non-local observables that make sense, at best, for extended domains of spacetime. After introducing Komar quantities associated with spacetime symmetries, it is shown how total energy-momentum can be unambiguously defined for isolated systems, providing fundamental tests for the internal consistency of General Relativity as well as setting the conceptual basis for the understanding of energy loss by gravitational radiation. Finally, several attempts to formulate quasi-local notions of mass and angular momentum associated with extended but finite spacetime domains are presented, together with some illustrations of the relations between total and quasi-local quantities in the particular context of black hole spacetimes. This article is not intended to be a rigorous and exhaustive review of the subject, but rather an invitation to the topic for non-experts. In this sense we follow essentially the expositions in Szabados 2004, Gourgoulhon 2007, Poisson 2004 and Wald 84, and refer the reader interested in further developments to the existing literature, in particular to the excellent and comprehensive review by Szabados (2004).Comment: 41 pages. Notes based on the lecture given at the C.N.R.S. "School on Mass" (June 2008) in Orleans, France. To appear as proceedings in the book "Mass and Motion in General Relativity", eds. L. Blanchet, A. Spallicci and B. Whiting. Some comments and references added

    Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.</p> <p>We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.</p> <p>Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution.</p> <p>Results</p> <p>Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (<it>L</it><sub>1</sub>) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.</p> <p>Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations.</p> <p>Conclusions</p> <p>The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.</p> <p>The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.</p> <p>We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.</p

    Effects on incident reporting after educating residents in patient safety: a controlled study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Medical residents are key figures in delivering health care and an important target group for patient safety education. Reporting incidents is an important patient safety domain, as awareness of vulnerabilities could be a starting point for improvements. This study examined effects of patient safety education for residents on knowledge, skills, attitudes, intentions and behavior concerning incident reporting.</p> <p>Methods</p> <p>A controlled study with follow-up measurements was conducted. In 2007 and 2008 two patient safety courses for residents were organized. Residents from a comparable hospital acted as external controls. Data were collected in three ways: 1] questionnaires distributed before, immediately after and three months after the course, 2] incident reporting cards filled out by course participants during the course, and 3] residents' reporting data gathered from hospital incident reporting systems.</p> <p>Results</p> <p>Forty-four residents attended the course and 32 were external controls. Positive changes in knowledge, skills and attitudes were found after the course. Residents' intentions to report incidents were positive at all measurements. Participants filled out 165 incident reporting cards, demonstrating the skills to notice incidents. Residents who had reported incidents before, reported more incidents after the course. However, the number of residents reporting incidents did not increase. An increase in reported incidents was registered by the reporting system of the intervention hospital.</p> <p>Conclusions</p> <p>Patient safety education can have immediate and long-term positive effects on knowledge, skills and attitudes, and modestly influence the reporting behavior of residents.</p
    corecore