27 research outputs found

    Global energy governance : a review and research agenda

    Get PDF
    Over the past few years, global energy governance (GEG) has emerged as a major new field of enquiry in international studies. Scholars engaged in this field seek to understand how the energy sector is governed at the global level, by whom and with what consequences. By focusing on governance, they broaden and enrich the geopolitical and hard-nosed security perspectives that have long been, and still are, the dominant perspectives through which energy is analysed. Though still a nascent field, the literature on GEG is thriving and continues to attract the attention of a growing number of researchers. This article reviews the GEG literature as it has developed over the past 10 years. Our aim is to highlight both the progress and limitations of the field, and to identify some opportunities for future research. The article proceeds as follows. First, it traces the origins of the GEG literature (section “Origins and roots of GEG research”). The subsequent sections deal with the two topics that have received the most attention in the GEG literature: Why does energy need global governance (section “The goals and rationale of global energy governance”)? And, who governs energy (section “Mapping the global energy architecture”)? We then address a third question that has received far less attention: How well or poor is energy governed (section “Evaluating global energy governance”)? In our conclusions (section “Conclusions and outlook”), we reflect on the current state of GEG, review recent trends and innovations, and identify some questions that warrant future consideration by scholars. This article is published as part of a thematic collection on global governance

    Three-Dimensional Structure of a Simple Liquid at a Face-Centered-Cubic (001) Solid Surface Interface

    Get PDF
    A liquid in the vicinity of a solid-liquid interface (SLI) may exhibit complex structures. In this study, we used molecular dynamics simulations demonstrating for the first time that the liquid adjacent to the SLI can have a two-level structure in some cases: a major structure and a minor structure. Through a time-averaging process of molecular motions, we identified the type of the liquid structure by calculating positions of the maximum liquid density in three spatial dimensions, and these positions were found to distribute in many dispersed zones (called high-density zones (HDZs)). The major structure appears throughout the SLI, while the minor structure only occurs significantly within the third layer. Instead of the previously reported body-centered cubic (BCC) or face-centered-cubic (FCC) types, the major structure was found to show a body-centered tetragonal (BCT) type. The adjacent HDZs are connected by specific junctions, demonstrating that atoms diffuse along some particular high probability paths from one HDZ to another. By considering the three-dimensional liquid density distribution from the continuum point of view, more complete details of the structure and diffusive behavior of liquids in the SLI are also possible to be revealed
    corecore